@article{KoberErdmannHellmichetal.2006, author = {Kober, C. and Erdmann, Bodo and Hellmich, Christian and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Validation of interdependency between inner structure visualization and structural mechanics simulation}, series = {Int. Poster J. Dent. Oral Med.}, journal = {Int. Poster J. Dent. Oral Med.}, year = {2006}, language = {en} } @article{KoberErdmannHellmichetal.2006, author = {Kober, C. and Erdmann, Bodo and Hellmich, Christian and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Validation of interdependency between inner structure visualization and structural mechanics simulation}, series = {Int. Poster J. Dent. Oral Med.}, journal = {Int. Poster J. Dent. Oral Med.}, year = {2006}, language = {en} } @article{WeiserErdmannSchenkletal., author = {Weiser, Martin and Erdmann, Bodo and Schenkl, Sebastian and Muggenthaler, Holger and Hubig, Michael and Mall, Gita and Zachow, Stefan}, title = {Uncertainty in Temperature-Based Determination of Time of Death}, series = {Heat and Mass Transfer}, volume = {54}, journal = {Heat and Mass Transfer}, number = {9}, publisher = {Springer}, doi = {10.1007/s00231-018-2324-4}, pages = {2815 -- 2826}, abstract = {Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types.}, language = {en} } @article{ErdmannLangSeebass1999, author = {Erdmann, Bodo and Lang, Jens and Seebass, Martin}, title = {The Impact of a Nonlinear Heat Transfer Model for Temperature Control in Regional Hyperthermia}, series = {IEEE Transactions on Biomedical Engineering}, volume = {49}, journal = {IEEE Transactions on Biomedical Engineering}, number = {9}, pages = {1129 -- 1138}, year = {1999}, language = {en} } @article{WeiserFreytagErdmannetal., author = {Weiser, Martin and Freytag, Yvonne and Erdmann, Bodo and Hubig, Michael and Mall, Gita}, title = {Optimal Design of Experiments for Estimating the Time of Death in Forensic Medicine}, series = {Inverse Problems}, volume = {34}, journal = {Inverse Problems}, number = {12}, doi = {10.1088/1361-6420/aae7a5}, pages = {125005}, abstract = {Estimation of time of death based on a single measurement of body core temperature is a standard procedure in forensic medicine. Mechanistic models using simulation of heat transport promise higher accuracy than established phenomenological models in particular in nonstandard situations, but involve many not exactly known physical parameters. Identifying both time of death and physical parameters from multiple temperature measurements is one possibility to reduce the uncertainty significantly. In this paper, we consider the inverse problem in a Bayesian setting and perform both local and sampling-based uncertainty quantification, where proper orthogonal decomposition is used as model reduction for fast solution of the forward model. Based on the local uncertainty quantification, optimal design of experiments is performed in order to minimize the uncertainty in the time of death estimate for a given number of measurements. For reasons of practicability, temperature acquisition points are selected from a set of candidates in different spatial and temporal locations. Applied to a real corpse model, a significant accuracy improvement is obtained already with a small number of measurements.}, language = {en} } @article{HellmichKoberErdmann2008, author = {Hellmich, Christian and Kober, Cornelia and Erdmann, Bodo}, title = {Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible}, series = {Annals of Biomedical Engineering}, volume = {36}, journal = {Annals of Biomedical Engineering}, number = {1}, doi = {10.1007/s10439-007-9393-8}, pages = {108 -- 122}, year = {2008}, language = {en} } @article{LangErdmannSeebass1999, author = {Lang, Jens and Erdmann, Bodo and Seebaß, Martin}, title = {Impact of Nonlinear Heat Tansfer on Temperature Control in Regional Hypertermia}, series = {IEEE Trans. Biomed. Engrg.}, volume = {46}, journal = {IEEE Trans. Biomed. Engrg.}, doi = {10.1109/10.784145}, pages = {1129 -- 1138}, year = {1999}, language = {en} } @article{KoberStuebingerErdmannetal.2006, author = {Kober, C. and St{\"u}binger, S. and Erdmann, Bodo and Hellmich, Christian and Radtke, Thomas and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Finite element simulation of the human mandible}, series = {Int. Poster J. Dent. Oral Med.}, journal = {Int. Poster J. Dent. Oral Med.}, year = {2006}, language = {en} } @article{KoberStuebingerErdmannetal.2006, author = {Kober, C. and St{\"u}binger, S. and Erdmann, Bodo and Hellmich, Christian and Radtke, Thomas and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Finite element simulation of the human mandible}, series = {Int. Poster J. Dent. Oral Med.}, journal = {Int. Poster J. Dent. Oral Med.}, year = {2006}, language = {en} } @article{ErdmannLjubijankicNytschGeusen2007, author = {Erdmann, Bodo and Ljubijankic, M. and Nytsch-Geusen, C.}, title = {Entwicklung einer Toolbox zur zwei- und dreidimensionalen instation{\"a}ren thermischen Bauteilsimulation mit KARDOS}, series = {Bauphsik}, volume = {29}, journal = {Bauphsik}, number = {1}, pages = {33 -- 39}, year = {2007}, language = {en} } @article{WeiserRoelligArndtetal., author = {Weiser, Martin and R{\"o}llig, Mathias and Arndt, Ralf and Erdmann, Bodo}, title = {Development and test of a numerical model for pulse thermography in civil engineering}, series = {Heat and Mass Transfer}, volume = {46}, journal = {Heat and Mass Transfer}, number = {11-12}, pages = {1419 -- 1428}, abstract = {Pulse thermography of concrete structures is used in civil engineering for detecting voids, honeycombing and delamination. The physical situation is readily modeled by Fourier's law. Despite the simplicity of the PDE structure, quantitatively realistic numerical 3D simulation faces two major obstacles. First, the short heating pulse induces a thin boundary layer at the heated surface which encapsulates all information and therefore has to be resolved faithfully. Even with adaptive mesh refinement techniques, obtaining useful accuracies requires an unsatisfactorily fine discretization. Second, bulk material parameters and boundary conditions are barely known exactly. We address both issues by a semi-analytic reformulation of the heat transport problem and by parameter identification. Numerical results are compared with measurements of test specimens.}, language = {en} } @article{KoberErdmannHellmichetal.2006, author = {Kober, C. and Erdmann, Bodo and Hellmich, Christian and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible}, series = {Comp. Meth. Biomech. Biomed. Eng.}, volume = {9(2)}, journal = {Comp. Meth. Biomech. Biomed. Eng.}, pages = {91 -- 101}, year = {2006}, language = {en} } @article{KoberErdmannSaderetal.2003, author = {Kober, C. and Erdmann, Bodo and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Belastungssimulation beim menschlichen Biss im Vergleich mit der Dichtestruktur im Unterkieferknochen}, series = {Biomedizinische Technik}, volume = {48}, journal = {Biomedizinische Technik}, number = {Erg{\"a}nzungsband 1}, pages = {268 -- 269}, year = {2003}, language = {en} } @article{SchenklMuggenthalerHubigetal.2017, author = {Schenkl, Sebastian and Muggenthaler, Holger and Hubig, Michael and Erdmann, Bodo and Weiser, Martin and Zachow, Stefan and Heinrich, Andreas and G{\"u}ttler, Felix Victor and Teichgr{\"a}ber, Ulf and Mall, Gita}, title = {Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis}, series = {International Journal of Legal Medicine}, volume = {131}, journal = {International Journal of Legal Medicine}, number = {3}, doi = {doi:10.1007/s00414-016-1523-0}, pages = {699 -- 712}, year = {2017}, abstract = {Temperature based death time estimation is based either on simple phenomenological models of corpse cooling or on detailed physical heat transfer models. The latter are much more complex, but allow a higher accuracy of death time estimation as in principle all relevant cooling mechanisms can be taken into account. Here, a complete work flow for finite element based cooling simulation models is presented. The following steps are demonstrated on CT-phantoms: • CT-scan • Segmentation of the CT images for thermodynamically relevant features of individual geometries • Conversion of the segmentation result into a Finite Element (FE) simulation model • Computation of the model cooling curve • Calculation of the cooling time For the first time in FE-based cooling time estimation the steps from the CT image over segmentation to FE model generation are semi-automatically performed. The cooling time calculation results are compared to cooling measurements performed on the phantoms under controlled conditions. In this context, the method is validated using different CTphantoms. Some of the CT phantoms thermodynamic material parameters had to be experimentally determined via independent experiments. Moreover the impact of geometry and material parameter uncertainties on the estimated cooling time is investigated by a sensitivity analysis.}, language = {en} } @article{WeiserDeuflhardErdmann2007, author = {Weiser, Martin and Deuflhard, Peter and Erdmann, Bodo}, title = {Affine conjugate adaptive Newton methods for nonlinear elastomechanics}, series = {Opt. Meth. Softw.}, volume = {22}, journal = {Opt. Meth. Softw.}, number = {3}, pages = {413 -- 431}, year = {2007}, language = {en} } @article{ColliFranzoneDeuflhardErdmannetal.2006, author = {Colli Franzone, Piero and Deuflhard, Peter and Erdmann, Bodo and Lang, Jens and Pavarino, Luca Franco}, title = {Adaptivity in Space and Time for Reaction-Diffusion Systems in Electrocardiology}, series = {SIAM J. Sc. Comp.}, volume = {28}, journal = {SIAM J. Sc. Comp.}, pages = {942 -- 962}, year = {2006}, language = {en} } @article{DeuflhardErdmannRoitzschetal.2009, author = {Deuflhard, Peter and Erdmann, Bodo and Roitzsch, Rainer and Lines, Glenn Terje}, title = {Adaptive Finite Element Simulation of Ventricular Dynamics}, series = {J. Computing and Visualization in Science}, volume = {12}, journal = {J. Computing and Visualization in Science}, pages = {201 -- 205}, year = {2009}, language = {en} } @article{AckermannErdmannRoitzsch1994, author = {Ackermann, J{\"o}rg and Erdmann, Bodo and Roitzsch, Rainer}, title = {A self-adaptive multilevel finite element method for the stationary Schr{\"o}dinger equation in three space dimensions}, series = {J. Chem. Phys.}, volume = {101}, journal = {J. Chem. Phys.}, pages = {7643 -- 7650}, year = {1994}, language = {en} }