@article{LiPimentelSzengeletal., author = {Li, Jianning and Pimentel, Pedro and Szengel, Angelika and Ehlke, Moritz and Lamecker, Hans and Zachow, Stefan and Estacio, Laura and Doenitz, Christian and Ramm, Heiko and Shi, Haochen and Chen, Xiaojun and Matzkin, Franco and Newcombe, Virginia and Ferrante, Enzo and Jin, Yuan and Ellis, David G. and Aizenberg, Michele R. and Kodym, Oldrich and Spanel, Michal and Herout, Adam and Mainprize, James G. and Fishman, Zachary and Hardisty, Michael R. and Bayat, Amirhossein and Shit, Suprosanna and Wang, Bomin and Liu, Zhi and Eder, Matthias and Pepe, Antonio and Gsaxner, Christina and Alves, Victor and Zefferer, Ulrike and von Campe, Cord and Pistracher, Karin and Sch{\"a}fer, Ute and Schmalstieg, Dieter and Menze, Bjoern H. and Glocker, Ben and Egger, Jan}, title = {AutoImplant 2020 - First MICCAI Challenge on Automatic Cranial Implant Design}, series = {IEEE Transactions on Medical Imaging}, volume = {40}, journal = {IEEE Transactions on Medical Imaging}, number = {9}, issn = {0278-0062}, doi = {10.1109/TMI.2021.3077047}, pages = {2329 -- 2342}, abstract = {The aim of this paper is to provide a comprehensive overview of the MICCAI 2020 AutoImplant Challenge. The approaches and publications submitted and accepted within the challenge will be summarized and reported, highlighting common algorithmic trends and algorithmic diversity. Furthermore, the evaluation results will be presented, compared and discussed in regard to the challenge aim: seeking for low cost, fast and fully automated solutions for cranial implant design. Based on feedback from collaborating neurosurgeons, this paper concludes by stating open issues and post-challenge requirements for intra-operative use.}, language = {en} } @inproceedings{LuedkeAmiranashviliAmbellanetal., author = {L{\"u}dke, David and Amiranashvili, Tamaz and Ambellan, Felix and Ezhov, Ivan and Menze, Bjoern and Zachow, Stefan}, title = {Landmark-free Statistical Shape Modeling via Neural Flow Deformations}, series = {Medical Image Computing and Computer Assisted Intervention - MICCAI 2022}, volume = {13432}, booktitle = {Medical Image Computing and Computer Assisted Intervention - MICCAI 2022}, publisher = {Springer, Cham}, doi = {10.1007/978-3-031-16434-7_44}, abstract = {Statistical shape modeling aims at capturing shape variations of an anatomical structure that occur within a given population. Shape models are employed in many tasks, such as shape reconstruction and image segmentation, but also shape generation and classification. Existing shape priors either require dense correspondence between training examples or lack robustness and topological guarantees. We present FlowSSM, a novel shape modeling approach that learns shape variability without requiring dense correspondence between training instances. It relies on a hierarchy of continuous deformation flows, which are parametrized by a neural network. Our model outperforms state-of-the-art methods in providing an expressive and robust shape prior for distal femur and liver. We show that the emerging latent representation is discriminative by separating healthy from pathological shapes. Ultimately, we demonstrate its effectiveness on two shape reconstruction tasks from partial data. Our source code is publicly available (https://github.com/davecasp/flowssm).}, language = {en} } @inproceedings{AmiranashviliLuedkeLietal., author = {Amiranashvili, Tamaz and L{\"u}dke, David and Li, Hongwei and Menze, Bjoern and Zachow, Stefan}, title = {Learning Shape Reconstruction from Sparse Measurements with Neural Implicit Functions}, series = {Medical Imaging with Deep Learning}, booktitle = {Medical Imaging with Deep Learning}, abstract = {Reconstructing anatomical shapes from sparse or partial measurements relies on prior knowledge of shape variations that occur within a given population. Such shape priors are learned from example shapes, obtained by segmenting volumetric medical images. For existing models, the resolution of a learned shape prior is limited to the resolution of the training data. However, in clinical practice, volumetric images are often acquired with highly anisotropic voxel sizes, e.g. to reduce image acquisition time in MRI or radiation exposure in CT imaging. The missing shape information between the slices prohibits existing methods to learn a high-resolution shape prior. We introduce a method for high-resolution shape reconstruction from sparse measurements without relying on high-resolution ground truth for training. Our method is based on neural implicit shape representations and learns a continuous shape prior only from highly anisotropic segmentations. Furthermore, it is able to learn from shapes with a varying field of view and can reconstruct from various sparse input configurations. We demonstrate its effectiveness on two anatomical structures: vertebra and femur, and successfully reconstruct high-resolution shapes from sparse segmentations, using as few as three orthogonal slices.}, language = {en} } @article{AmiranashviliLuedkeLietal., author = {Amiranashvili, Tamaz and L{\"u}dke, David and Li, Hongwei Bran and Zachow, Stefan and Menze, Bjoern}, title = {Learning continuous shape priors from sparse data with neural implicit functions}, series = {Medical Image Analysis}, volume = {94}, journal = {Medical Image Analysis}, doi = {10.1016/j.media.2024.103099}, pages = {103099}, abstract = {Statistical shape models are an essential tool for various tasks in medical image analysis, including shape generation, reconstruction and classification. Shape models are learned from a population of example shapes, which are typically obtained through segmentation of volumetric medical images. In clinical practice, highly anisotropic volumetric scans with large slice distances are prevalent, e.g., to reduce radiation exposure in CT or image acquisition time in MR imaging. For existing shape modeling approaches, the resolution of the emerging model is limited to the resolution of the training shapes. Therefore, any missing information between slices prohibits existing methods from learning a high-resolution shape prior. We propose a novel shape modeling approach that can be trained on sparse, binary segmentation masks with large slice distances. This is achieved through employing continuous shape representations based on neural implicit functions. After training, our model can reconstruct shapes from various sparse inputs at high target resolutions beyond the resolution of individual training examples. We successfully reconstruct high-resolution shapes from as few as three orthogonal slices. Furthermore, our shape model allows us to embed various sparse segmentation masks into a common, low-dimensional latent space — independent of the acquisition direction, resolution, spacing, and field of view. We show that the emerging latent representation discriminates between healthy and pathological shapes, even when provided with sparse segmentation masks. Lastly, we qualitatively demonstrate that the emerging latent space is smooth and captures characteristic modes of shape variation. We evaluate our shape model on two anatomical structures: the lumbar vertebra and the distal femur, both from publicly available datasets.}, language = {en} }