@inproceedings{BertholdFarmerHeinzetal., author = {Berthold, Timo and Farmer, James and Heinz, Stefan and Perregaard, Michael}, title = {Parallelization of the FICO Xpress-Optimizer}, series = {Mathematical Software - ICMS 2016, 5th International Conference Berlin, Germany, July 11-14, 2016 Proceedings}, booktitle = {Mathematical Software - ICMS 2016, 5th International Conference Berlin, Germany, July 11-14, 2016 Proceedings}, doi = {10.1007/978-3-319-42432-3_31}, pages = {251 -- 258}, language = {en} } @inproceedings{ShinanoBertholdHeinz, author = {Shinano, Yuji and Berthold, Timo and Heinz, Stefan}, title = {A First Implementation of ParaXpress: Combining Internal and External Parallelization to Solve MIPs on Supercomputers}, series = {Mathematical Software - ICMS 2016, 5th International Conference Berlin, Germany, July 11-14, 2016 Proceedings}, booktitle = {Mathematical Software - ICMS 2016, 5th International Conference Berlin, Germany, July 11-14, 2016 Proceedings}, doi = {10.1007/978-3-319-42432-3_38}, pages = {308 -- 316}, language = {en} } @misc{RalphsShinanoBertholdetal., author = {Ralphs, Ted and Shinano, Yuji and Berthold, Timo and Koch, Thorsten}, title = {Parallel Solvers for Mixed Integer Linear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62239}, abstract = {In this article, we introduce parallel mixed integer linear programming (MILP) solvers. MILP solving algorithms have been improved tremendously in the last two decades. Currently, commercial MILP solvers are known as a strong optimization tool. Parallel MILP solver development has started in 1990s. However, since the improvements of solving algorithms have much impact to solve MILP problems than application of parallel computing, there were not many visible successes. With the spread of multi-core CPUs, current state-of-the-art MILP solvers have parallel implementations and researches to apply parallelism in the solving algorithm also getting popular. We summarize current existing parallel MILP solver architectures.}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, series = {Proc. of 30th IEEE International Parallel \& Distributed Processing Symposium}, booktitle = {Proc. of 30th IEEE International Parallel \& Distributed Processing Symposium}, doi = {10.1109/IPDPS.2016.56}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @misc{BertholdHendelKoch, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {The Three Phases of MIP Solving}, issn = {1438-0064}, doi = {10.1080/10556788.2017.1392519}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61607}, abstract = {Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.}, language = {en} } @misc{GleixnerBertholdMuelleretal., author = {Gleixner, Ambros and Berthold, Timo and M{\"u}ller, Benjamin and Weltge, Stefan}, title = {Three Enhancements for Optimization-Based Bound Tightening}, issn = {1438-0064}, doi = {10.1007/s10898-016-0450-4}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57803}, abstract = {Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper is to discuss algorithmic techniques for an efficient implementation of OBBT. Most state-of-the-art MINLP solvers apply some restricted version of OBBT and it seems to be common belief that OBBT is beneficial if only one is able to keep its computational cost under control. To this end, we introduce three techniques to increase the efficiency of OBBT: filtering strategies to reduce the number of solved LPs, ordering heuristics to exploit simplex warm starts, and the generation of Lagrangian variable bounds (LVBs). The propagation of LVBs during tree search is a fast approximation to OBBT without the need to solve auxiliary LPs. We conduct extensive computational experiments on MINLPLib2. Our results indicate that OBBT is most beneficial on hard instances, for which we observe a speedup of 17\% to 19\% on average. Most importantly, more instances can be solved when using OBBT.}, language = {en} } @misc{WitzigBertholdHeinz, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {Experiments with Conflict Analysis in Mixed Integer Programming}, issn = {1438-0064}, doi = {10.1007/978-3-319-59776-8_17}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61087}, abstract = {The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.}, language = {en} }