@inproceedings{GamrathMelchioriBertholdetal., author = {Gamrath, Gerald and Melchiori, Anna and Berthold, Timo and Gleixner, Ambros and Salvagnin, Domenico}, title = {Branching on Multi-aggregated Variables}, series = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015}, volume = {9075}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015}, doi = {10.1007/978-3-319-18008-3_10}, pages = {141 -- 156}, abstract = {In mixed-integer programming, the branching rule is a key component to a fast convergence of the branch-and-bound algorithm. The most common strategy is to branch on simple disjunctions that split the domain of a single integer variable into two disjoint intervals. Multi-aggregation is a presolving step that replaces variables by an affine linear sum of other variables, thereby reducing the problem size. While this simplification typically improves the performance of MIP solvers, it also restricts the degree of freedom in variable-based branching rules. We present a novel branching scheme that tries to overcome the above drawback by considering general disjunctions defined by multi-aggregated variables in addition to the standard disjunctions based on single variables. This natural idea results in a hybrid between variable- and constraint-based branching rules. Our implementation within the constraint integer programming framework SCIP incorporates this into a full strong branching rule and reduces the number of branch-and-bound nodes on a general test set of publicly available benchmark instances. For a specific class of problems, we show that the solving time decreases significantly.}, language = {en} } @misc{BertholdSalvagnin, author = {Berthold, Timo and Salvagnin, Domenico}, title = {Cloud branching}, series = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems}, volume = {7874}, journal = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems}, editor = {Gomes, Carla and Sellmann, Meinolf}, publisher = {Springer}, doi = {10.1007/978-3-642-38171-3_3}, pages = {28 -- 43}, abstract = {Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud) of the current LP relaxation. These strategies naturally extend state-of-the-art methods like strong branching, pseudocost branching, and their hybrids. We show that by exploiting dual degeneracy, and thus multiple alternative optimal solutions, it is possible to enhance traditional methods. We present preliminary computational results, applying the newly proposed strategy to full strong branching, which is known to be the MIP branching rule leading to the fewest number of search nodes. It turns out that cloud branching can reduce the mean running time by up to 30\% on standard test sets.}, language = {en} } @article{KochAchterbergAndersenetal.2011, author = {Koch, Thorsten and Achterberg, Tobias and Andersen, Erling and Bastert, Oliver and Berthold, Timo and Bixby, Robert E. and Danna, Emilie and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Lodi, Andrea and Mittelmann, Hans and Ralphs, Ted and Salvagnin, Domenico and Steffy, Daniel and Wolter, Kati}, title = {MIPLIB 2010}, series = {Mathematical Programming Computation}, volume = {3}, journal = {Mathematical Programming Computation}, number = {2}, doi = {10.1007/s12532-011-0025-9}, pages = {103 -- 163}, year = {2011}, language = {en} } @misc{GamrathMelchioriBertholdetal., author = {Gamrath, Gerald and Melchiori, Anna and Berthold, Timo and Gleixner, Ambros and Salvagnin, Domenico}, title = {Branching on multi-aggregated variables}, issn = {1438-0064}, doi = {10.1007/978-3-319-18008-3_10}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53829}, abstract = {In mixed-integer programming, the branching rule is a key component to a fast convergence of the branch-and-bound algorithm. The most common strategy is to branch on simple disjunctions that split the domain of a single integer variable into two disjoint intervals. Multi-aggregation is a presolving step that replaces variables by an affine linear sum of other variables, thereby reducing the problem size. While this simplification typically improves the performance of MIP solvers, it also restricts the degree of freedom in variable-based branching rules. We present a novel branching scheme that tries to overcome the above drawback by considering general disjunctions defined by multi-aggregated variables in addition to the standard disjunctions based on single variables. This natural idea results in a hybrid between variable- and constraint-based branching rules. Our implementation within the constraint integer programming framework SCIP incorporates this into a full strong branching rule and reduces the number of branch-and-bound nodes on a general test set of publicly available benchmark instances. For a specific class of problems, we show that the solving time decreases significantly.}, language = {en} } @article{GleixnerHendelGamrathetal., author = {Gleixner, Ambros and Hendel, Gregor and Gamrath, Gerald and Achterberg, Tobias and Bastubbe, Michael and Berthold, Timo and Christophel, Philipp M. and Jarck, Kati and Koch, Thorsten and Linderoth, Jeff and L{\"u}bbecke, Marco and Mittelmann, Hans and Ozyurt, Derya and Ralphs, Ted and Salvagnin, Domenico and Shinano, Yuji}, title = {MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library}, series = {Mathematical Programming Computation}, volume = {13}, journal = {Mathematical Programming Computation}, number = {3}, doi = {10.1007/s12532-020-00194-3}, pages = {443 -- 490}, abstract = {We report on the selection process leading to the sixth version of the Mixed Integer Programming Library. Selected from an initial pool of over 5,000 instances, the new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was specially selected for benchmarking solver performance. For the first time, the compilation of these sets was done using a data-driven selection process supported by the solution of a sequence of mixed integer optimization problems, which encoded requirements on diversity and balancedness with respect to instance features and performance data.}, language = {en} } @misc{BertholdGamrathSalvagnin, author = {Berthold, Timo and Gamrath, Gerald and Salvagnin, Domenico}, title = {Exploiting Dual Degeneracy in Branching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73028}, abstract = {Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper, we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud ) of the current LP relaxation. These strategies naturally extend common methods like most infeasible branching, strong branching, pseudocost branching, and their hybrids, but we also propose a novel branching rule called cloud diameter branching. We show that dual degeneracy, a requirement for alternative LP optima, is present for many instances from common MIP test sets. Computational experiments show significant improvements in the quality of branching decisions as well as reduced branching effort when using our modifications of existing branching rules. We discuss different ways to generate a cloud of solutions and present extensive computational results showing that through a careful implementation, cloud modifications can speed up full strong branching by more than 10 \% on standard test sets. Additionally, by exploiting degeneracy, we are also able to improve the state-of-the-art hybrid branching rule and reduce the solving time on affected instances by almost 20 \% on average.}, language = {en} }