@inproceedings{WitzigBerthold2020, author = {Witzig, Jakob and Berthold, Timo}, title = {Conflict-Free Learning for Mixed Integer Programming}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2020}, number = {12296}, publisher = {Springer, Cham.}, doi = {10.1007/978-3-030-58942-4_34}, pages = {521 -- 530}, year = {2020}, abstract = {Conflict learning plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. A major step for MIP conflict learning is to aggregate the LP relaxation of an infeasible subproblem to a single globally valid constraint, the dual proof, that proves infeasibility within the local bounds. Among others, one way of learning is to add these constraints to the problem formulation for the remainder of the search. We suggest to not restrict this procedure to infeasible subproblems, but to also use global proof constraints from subproblems that are not (yet) infeasible, but can be expected to be pruned soon. As a special case, we also consider learning from integer feasible LP solutions. First experiments of this conflict-free learning strategy show promising results on the MIPLIB2017 benchmark set.}, language = {en} } @inproceedings{BertholdGleixner2013, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover Branching}, volume = {7933}, booktitle = {Experimental Algorithms, 12th International Symposium, SEA 2013, Rome, Italy, June 5-7, 2013, Proceedings}, editor = {Bonifaci, Vincenzo and Demetrescu, Camil and Marchetti-Spaccamela, Alberto}, doi = {10.1007/978-3-642-38527-8_20}, pages = {212 -- 223}, year = {2013}, abstract = {In this paper, we present a new branching strategy for nonconvex MINLP that aims at driving the created subproblems towards linearity. It exploits the structure of a minimum cover of an MINLP, a smallest set of variables that, when fixed, render the remaining system linear: whenever possible, branching candidates in the cover are preferred. Unlike most branching strategies for MINLP, Undercover branching is not an extension of an existing MIP branching rule. It explicitly regards the nonlinearity of the problem while branching on integer variables with a fractional relaxation solution. Undercover branching can be naturally combined with any variable-based branching rule. We present computational results on a test set of general MINLPs from MINLPLib, using the new strategy in combination with reliability branching and pseudocost branching. The computational cost of Undercover branching itself proves negligible. While it turns out that it can influence the variable selection only on a smaller set of instances, for those that are affected, significant improvements in performance are achieved.}, language = {en} } @article{BertholdKochShinano2021, author = {Berthold, Timo and Koch, Thorsten and Shinano, Yuji}, title = {MILP. Try. Repeat.}, volume = {2}, journal = {Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021}, year = {2021}, language = {en} } @inproceedings{BertholdGrimmReutheretal.2019, author = {Berthold, Timo and Grimm, Boris and Reuther, Markus and Schade, Stanley and Schlechte, Thomas}, title = {Strategic Planning of Rolling Stock Rotations for Public Tenders}, volume = {Link{\"o}ping Electronic Conference Proceedings}, booktitle = {Proceedings of the 8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019}, number = {069}, publisher = {Link{\"o}ping University Electronic Press, Link{\"o}pings universitet}, isbn = {978-91-7929-992-7}, issn = {1650-3686}, pages = {148 -- 159}, year = {2019}, abstract = {Since railway companies have to apply for long-term public contracts to operate railway lines in public tenders, the question how they can estimate the operating cost for long-term periods adequately arises naturally. We consider a rolling stock rotation problem for a time period of ten years, which is based on a real world instance provided by an industry partner. We use a two stage approach for the cost estimation of the required rolling stock. In the first stage, we determine a weekly rotation plan. In the second stage, we roll out this weekly rotation plan for a longer time period and incorporate scheduled maintenance treatments. We present a heuristic approach and a mixed integer programming model to implement the process of the second stage. Finally, we discuss computational results for a real world tendering scenario.}, language = {en} } @article{BertholdFarmerHeinzetal.2018, author = {Berthold, Timo and Farmer, James and Heinz, Stefan and Perregaard, Michael}, title = {Parallelization of the FICO Xpress Optimizer}, volume = {33}, journal = {Optimization Methods and Software}, number = {3}, doi = {10.1080/10556788.2017.1333612}, pages = {518 -- 529}, year = {2018}, abstract = {Computing hardware has mostly thrashed out the physical limits for speeding up individual computing cores. Consequently, the main line of progress for new hardware is growing the number of computing cores within a single CPU. This makes the study of efficient parallelization schemes for computation-intensive algorithms more and more important. A natural precondition to achieving reasonable speedups from parallelization is maintaining a high workload of the available computational resources. At the same time, reproducibility and reliability are key requirements for software that is used in industrial applications. In this paper, we present the new parallelization concept for the state-of-the-art MIP solver FICO Xpress-Optimizer. MIP solvers like Xpress are expected to be deterministic. This inevitably results in synchronization latencies which render the goal of a satisfying workload a challenge in itself. We address this challenge by following a partial information approach and separating the concepts of simultaneous tasks and independent threads from each other. Our computational results indicate that this leads to a much higher CPU workload and thereby to an improved, almost linear, scaling on modern high-performance CPUs. As an added value, the solution path that Xpress takes is not only deterministic in a fixed environment, but also, to a certain extent, thread-independent. This paper is an extended version of Berthold et al. [Parallelization of the FICO Xpress-Optimizer, in Mathematical Software - ICMS 2016: 5th International Conference, G.-M. Greuel, T. Koch, P. Paule, and A. Sommere, eds., Springer International Publishing, Berlin, 2016, pp. 251-258] containing more detailed technical descriptions, illustrative examples and updated computational results.}, language = {en} } @inproceedings{BertholdPerregaardMeszaros2018, author = {Berthold, Timo and Perregaard, Michael and M{\´e}sz{\´a}ros, Csaba}, title = {Four Good Reasons to Use an Interior Point Solver Within a MIP Solver}, booktitle = {Kliewer N., Ehmke J., Bornd{\"o}rfer R. (eds) Operations Research Proceedings 2017}, doi = {10.1007/978-3-319-89920-6_22}, pages = {159 -- 164}, year = {2018}, abstract = {"Interior point algorithms are a good choice for solving pure LPs or QPs, but when you solve MIPs, all you need is a dual simplex" This is the common conception which disregards that an interior point solution provides some unique structural insight into the problem at hand. In this paper, we will discuss some of the benefits that an interior point solver brings to the solution of difficult MIPs within FICO Xpress. This includes many different components of the MIP solver such as branching variable selection, primal heuristics, preprocessing, and of course the solution of the LP relaxation.}, language = {en} } @inproceedings{WitzigBertholdHeinz2019, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming}, volume = {11494}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019}, publisher = {Springer}, doi = {10.1007/978-3-030-19212-9_6}, pages = {84 -- 94}, year = {2019}, abstract = {Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part.}, language = {en} } @inproceedings{BertholdStuckeyWitzig2019, author = {Berthold, Timo and Stuckey, Peter and Witzig, Jakob}, title = {Local Rapid Learning for Integer Programs}, volume = {11494}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019}, publisher = {Springer}, doi = {10.1007/978-3-030-19212-9_5}, pages = {67 -- 83}, year = {2019}, abstract = {Conflict learning algorithms are an important component of modern MIP and CP solvers. But strong conflict information is typically gained by depth-first search. While this is the natural mode for CP solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP approach where CP search is applied at the root to learn information to support the remaining MIP solve. This has been demonstrated to be beneficial for binary programs. In this paper, we extend the idea of Rapid Learning to integer programs, where not all variables are restricted to the domain {0, 1}, and rather than just running a rapid CP search at the root, we will apply it repeatedly at local search nodes within the MIP search tree. To do so efficiently, we present six heuristic criteria to predict the chance for local Rapid Learning to be successful. Our computational experiments indicate that our extended Rapid Learning algorithm significantly speeds up MIP search and is particularly beneficial on highly dual degenerate problems.}, language = {en} } @article{GamrathBertholdHeinzetal.2019, author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-driven fix-and-propagate heuristics for mixed integer programming}, volume = {11}, journal = {Mathematical Programming Computation}, number = {4}, publisher = {Springer}, address = {Berlin Heidelberg}, doi = {10.1007/s12532-019-00159-1}, pages = {675 -- 702}, year = {2019}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early and help to reduce the time needed to prove optimality. In this paper, we present a scheme for start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved first as an LP, and then as an auxiliary MIP if the rounded LP solution does not provide a feasible solution already. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about 60 \% of the instances and by this, help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.}, language = {en} } @article{GleixnerHendelGamrathetal.2021, author = {Gleixner, Ambros and Hendel, Gregor and Gamrath, Gerald and Achterberg, Tobias and Bastubbe, Michael and Berthold, Timo and Christophel, Philipp M. and Jarck, Kati and Koch, Thorsten and Linderoth, Jeff and L{\"u}bbecke, Marco and Mittelmann, Hans and Ozyurt, Derya and Ralphs, Ted and Salvagnin, Domenico and Shinano, Yuji}, title = {MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library}, volume = {13}, journal = {Mathematical Programming Computation}, number = {3}, doi = {10.1007/s12532-020-00194-3}, pages = {443 -- 490}, year = {2021}, abstract = {We report on the selection process leading to the sixth version of the Mixed Integer Programming Library. Selected from an initial pool of over 5,000 instances, the new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was specially selected for benchmarking solver performance. For the first time, the compilation of these sets was done using a data-driven selection process supported by the solution of a sequence of mixed integer optimization problems, which encoded requirements on diversity and balancedness with respect to instance features and performance data.}, language = {en} }