@misc{MasingLindnerLiebchen, author = {Masing, Berenike and Lindner, Niels and Liebchen, Christian}, title = {Periodic Timetabling with Integrated Track Choice for Railway Construction Sites}, issn = {1438-0064}, doi = {10.1016/j.jrtpm.2023.100416}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88626}, abstract = {We propose a mixed-integer linear programming model to generate and optimize periodic timetables with integrated track choice in the context of railway construction sites. When a section of a railway network becomes unavailable, the nearby areas are typically operated close to their capacity limits, and hence carefully modeling headways and allowing flexible routings becomes vital. We therefore discuss first how to integrate headway constraints into the Periodic Event Scheduling Problem (PESP) that do not only prevent overtaking, but also guarantee conflict-free timetables in general and particularly inside stations. Secondly, we introduce a turn-sensitive event-activity network, which is able to integrate routing alternatives for turnarounds at stations, e.g., turning at a platform vs. at a pocket track for metro-like systems. We propose several model formulations to include track choice, and finally evaluate them on six real construction site scenarios on the S-Bahn Berlin network.}, language = {en} } @misc{LindnerMasing, author = {Lindner, Niels and Masing, Berenike}, title = {SAT-Generated Initial Solutions for Integrated Line Planning and Turn-Sensitive Periodic Timetabling with Track Choice}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-94644}, abstract = {Periodic timetabling is a challenging planning task in public transport. As safety requirements are crucial, track allocation is indispensable for validating the practical feasibility of a railway timetable. For busy stations with limited capacities, this requires a detailed planning of turnarounds. It is therefore desirable to integrate timetabling not only with track allocation, but also with vehicle scheduling and line planning. This is captured by the Integrated Line Planning and Turn-Sensitive Periodic Timetabling Problem with Track Choice, whose MIP formulation has been demonstrated to be effective for construction site railway rescheduling, as long as a good quality initial solution is available. In this paper, we discuss how to generate such a solution by extending the SAT formulation of the Periodic Event Scheduling Problem with track choice, track occupation, and minimum service frequency components. The SAT approach is superior to pure MIP on real-world instances of the S-Bahn Berlin network.}, language = {en} }