@misc{DeuflhardFreundWalter, author = {Deuflhard, Peter and Freund, R. and Walter, Artur}, title = {Fast Secant Methods for the Iterative Solution of Large Nonsymmetric Linear Systems.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-330}, number = {SC-90-05}, abstract = {A family of secant methods based on general rank-1 updates has been revisited in view of the construction of iterative solvers for large non- Hermitian linear systems. As it turns out, both Broydens "good" and "bad" update techniques play a special role - but should be associated with two different line search principles. For Broydens "bad" update technique, a minimum residual principle is natural - thus making it theorectically comparable with a series of well-known algorithms like GMRES. Broydens "good" update technique, however, is shown to be naturally linked with a minimum "next correction" principle - which asymptotically mimics a minimum error principle. The two minimization principles differ significantly for sufficiently large system dimension. Numerical experiments on discretized PDE's of convection diffusion type in 2-D with internal layers give a first impression of the possible power of the derived "good" Broyden variant. {\bf Key Words:} nonsymmetric linear system, secant method, rank-1 update, Broydens method, line search, GMRES. AMS(MOS) {\bf Subject Classifications:} 65F10, 65N20.}, language = {en} }