@article{CerecedaLopezOstinatoOrtizAmbrizetal., author = {Cereceda-L{\´o}pez, Eric and Ostinato, Mattia and Ortiz-Ambriz, Antonio and Straube, Arthur and Palassini, Matteo and Tierno, Pietro}, title = {Excluded volume induces buckling in optically driven colloidal rings}, series = {Phys. Rev. Research}, volume = {6}, journal = {Phys. Rev. Research}, doi = {10.1103/PhysRevResearch.6.L012044}, pages = {L012044}, abstract = {In our combined experimental, theoretical and numerical work, we study the out of equilibrium deformations in a shrinking ring of optically trapped, interacting colloidal particles. Steerable optical tweezers are used to confine dielectric microparticles along a circle of discrete harmonic potential wells, and to reduce the ring radius at a controlled quench speed. We show that excluded-volume interactions are enough to induce particle sliding from their equilibrium positions and nonequilibrium zigzag roughening of the colloidal structure. Our work unveils the underlying mechanism of interfacial deformation in radially driven microscopic discrete rings.}, language = {en} } @article{StraubeHoefling, author = {Straube, Arthur and H{\"o}fling, Felix}, title = {Memory effects in colloidal motion under confinement and driving}, series = {J. Phys. A: Math. Theor.}, volume = {57}, journal = {J. Phys. A: Math. Theor.}, publisher = {IOP Publishing}, issn = {1751-8113}, doi = {10.1088/1751-8121/ad5b2d}, pages = {295003}, abstract = {The transport of individual particles in inhomogeneous environments is complex and exhibits non-Markovian responses. The latter may be quantified by a memory function within the framework of the linear generalised Langevin equation (GLE). Here, we exemplify the implications of steady driving on the memory function of a colloidal model system for Brownian motion in a corrugated potential landscape, specifically, for one-dimensional motion in a sinusoidal potential. To this end, we consider the overdamped limit of the GLE, which is facilitated by separating the memory function into a singular (Markovian) and a regular (non-Markovian) part. Relying on exact solutions for the investigated model, we show that the random force entering the GLE must display a bias far from equilibrium, which corroborates a recent general prediction. Based on data for the mean-square displacement (MSD) obtained from Brownian dynamics simulations, we estimate the memory function for different driving strengths and show that already moderate driving accelerates the decay of the memory function by several orders of magnitude in time. We find that the memory may persist on much longer timescales than expected from the convergence of the MSD to its long-time asymptote. Furthermore, the functional form of the memory function changes from a monotonic decay to a non-monotonic, damped oscillatory behaviour, which can be understood from a competition of confined motion and depinning. Our analysis of the simulation data further reveals a pronounced non-Gaussianity, which questions the Gaussian approximation of the random force entering the GLE.}, language = {en} } @article{BonifaceStraubeTierno, author = {Boniface, Dolachai and Straube, Arthur and Tierno, Pietro}, title = {Photocatalytic magnetic microgyroscopes with activity-tunable precessional dynamics}, abstract = {Magnetic nano/microrotors are passive elements that spin around an axis due to an external rotating field while remaining confined to a close plane. They have been used to date in different applications related to fluid mixing, drug delivery or biomedicine. Here we realize an active version of a magnetic microgyroscope which is simultaneously driven by a photo-activated catalytic reaction and a rotating magnetic field. We investigate the uplift dynamics of this colloidal spinner when it stands up and precesses around its long axis while self-propelling due to the light induced decomposition of hydrogen peroxide in water. By combining experiments with theory, we show that activity emerging from the cooperative action of phoretic and osmotic forces effectively increase the gravitational torque which counteracts the magnetic and viscous ones, and carefully measure its contribution.}, language = {en} } @article{StraubeWinkelmannHoefling, author = {Straube, Arthur and Winkelmann, Stefanie and H{\"o}fling, Felix}, title = {Accurate reduced models for the pH oscillations in the urea-urease reaction confined to giant lipid vesicles}, series = {The Journal of Physical Chemistry B}, volume = {127}, journal = {The Journal of Physical Chemistry B}, number = {13}, doi = {10.1021/acs.jpcb.2c09092}, pages = {2955 -- 2967}, abstract = {This theoretical study concerns a pH oscillator based on the urea-urease reaction confined to giant lipid vesicles. Under suitable conditions, differential transport of urea and hydrogen ion across the unilamellar vesicle membrane periodically resets the pH clock that switches the system from acid to basic, resulting in self-sustained oscillations. We analyse the structure of the phase flow and of the limit cycle, which controls the dynamics for giant vesicles and dominates the pronouncedly stochastic oscillations in small vesicles of submicrometer size. To this end, we derive reduced models, which are amenable to analytic treatments that are complemented by numerical solutions, and obtain the period and amplitude of the oscillations as well as the parameter domain, where oscillatory behavior persists. We show that the accuracy of these predictions is highly sensitive to the employed reduction scheme. In particular, we suggest an accurate two-variable model and show its equivalence to a three-variable model that admits an interpretation in terms of a chemical reaction network. The faithful modeling of a single pH oscillator appears crucial for rationalizing experiments and understanding communication of vesicles and synchronization of rhythms.}, language = {en} } @article{StraubeHoefling, author = {Straube, Arthur and H{\"o}fling, Felix}, title = {Depinning transition of self-propelled particles}, abstract = {A depinning transition is observed in a variety of contexts when a certain threshold force must be applied to drive a system out of an immobile state. A well-studied example is the depinning of colloidal particles from a corrugated landscape, whereas its active-matter analogue has remained unexplored. We discuss how active noise due to self-propulsion impacts the nature of the transition: it causes a change of the critical exponent from 1/2 for quickly reorienting particles to 3/2 for slowly reorienting ones. In between these analytically tractable limits, the drift velocity exhibits a superexponential behavior as is corroborated by high-precision data. Giant diffusion phenomena occur in the two different regimes. Our predictions appear amenable to experimental tests, lay foundations for insight into the depinning of collective variables in active matter, and are relevant for any system with a saddle-node bifurcation in the presence of a bounded noise.}, language = {en} } @misc{StraubeWinkelmannHoefling, author = {Straube, Arthur and Winkelmann, Stefanie and H{\"o}fling, Felix}, title = {Accurate reduced models for the pH oscillations in the urea-urease reaction confined to giant lipid vesicles}, issn = {1438-0064}, doi = {10.12752/8817}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88179}, abstract = {Our theoretical study concerns an urea-urease-based pH oscillator confined to giant lipid vesicles. Under suitable conditions, differential transport of urea and hydrogen ion across the unilamellar vesicle membrane periodically resets the pH clock that switches the system from acid to basic, resulting in self-sustained oscillations. We analyse the structure of the limit cycle, which controls the dynamics for giant vesicles and dominates the strongly stochastic oscillations in small vesicles of submicrometer size. To this end, we derive reduced models, amenable to analytic treatments, and show that the accuracy of predictions, including the period of oscillations, is highly sensitive to the choice of the reduction scheme. In particular, we suggest an accurate two-variable model and show its equivalence to a three-variable model that admits an interpretation in terms of a chemical reaction network. The accurate description of a single pH oscillator appears crucial for rationalizing experiments and understanding communication of vesicles and synchronization of rhythms.}, language = {en} } @article{delRazoFroembergStraubeetal., author = {del Razo, Mauricio and Fr{\"o}mberg, Daniela and Straube, Arthur and Sch{\"u}tte, Christof and H{\"o}fling, Felix and Winkelmann, Stefanie}, title = {A probabilistic framework for particle-based reaction-diffusion dynamics using classical Fock space representations}, series = {Letters in Mathematical Physics}, volume = {112}, journal = {Letters in Mathematical Physics}, number = {49}, doi = {10.1007/s11005-022-01539-w}, language = {en} } @article{TiernoJohansenStraube, author = {Tierno, Pietro and Johansen, Tom H. and Straube, Arthur}, title = {Thermally active nanoparticle clusters enslaved by engineered domain wall traps}, series = {Nature Commun.}, volume = {12}, journal = {Nature Commun.}, doi = {10.1038/s41467-021-25931-7}, pages = {5813}, abstract = {The stable assembly of fluctuating nanoparticle clusters on a surface represents a technological challenge of widespread interest for both fundamental and applied research. Here we demonstrate a technique to stably confine in two dimensions clusters of interacting nanoparticles via size-tunable, virtual magnetic traps. We use cylindrical Bloch walls arranged to form a triangular lattice of ferromagnetic domains within an epitaxially grown ferrite garnet film. At each domain, the magnetic stray field generates an effective harmonic potential with a field tunable stifness. The experiments are combined with theory to show that the magnetic confinement is effectively harmonic and pairwise interactions are of dipolar nature, leading to central, strictly repulsive forces. For clusters of magnetic nanoparticles, the stationary collective states arise from the competition between repulsion, confinement and the tendency to fill the central potential well. Using a numerical simulation model as a quantitative map between the experiment and theory we explore the field-induced crystallization process for larger clusters and unveil the existence of three different dynamical regimes. The present method provides a model platform for investigations of the collective phenomena emerging when strongly confined nanoparticle clusters are forced to move in an idealized, harmonic-like potential.}, language = {en} } @article{StraubeWinkelmannSchuetteetal., author = {Straube, Arthur and Winkelmann, Stefanie and Sch{\"u}tte, Christof and H{\"o}fling, Felix}, title = {Stochastic pH oscillations in a model of the urea-urease reaction confined to lipid vesicles}, series = {J. Phys. Chem. Lett.}, volume = {12}, journal = {J. Phys. Chem. Lett.}, doi = {10.1021/acs.jpclett.1c03016}, pages = {9888 -- 9893}, abstract = {The urea-urease clock reaction is a pH switch from acid to basic that can turn into a pH oscillator if it occurs inside a suitable open reactor. We numerically study the confinement of the reaction to lipid vesicles, which permit the exchange with an external reservoir by differential transport, enabling the recovery of the pH level and yielding a constant supply of urea molecules. For microscopically small vesicles, the discreteness of the number of molecules requires a stochastic treatment of the reaction dynamics. Our analysis shows that intrinsic noise induces a significant statistical variation of the oscillation period, which increases as the vesicles become smaller. The mean period, however, is found to be remarkably robust for vesicle sizes down to approximately 200 nm, but the periodicity of the rhythm is gradually destroyed for smaller vesicles. The observed oscillations are explained as a canard-like limit cycle that differs from the wide class of conventional feedback oscillators.}, language = {en} } @article{StraubeKowalikNetzetal., author = {Straube, Arthur and Kowalik, Bartosz G. and Netz, Roland R. and H{\"o}fling, Felix}, title = {Rapid onset of molecular friction in liquids bridging between the atomistic and hydrodynamic pictures}, series = {Commun. Phys.}, volume = {3}, journal = {Commun. Phys.}, publisher = {Nature}, doi = {10.1038/s42005-020-0389-0}, pages = {126}, abstract = {Friction in liquids arises from conservative forces between molecules and atoms. Although the hydrodynamics at the nanoscale is subject of intense research and despite the enormous interest in the non-Markovian dynamics of single molecules and solutes, the onset of friction from the atomistic scale so far could not be demonstrated. Here, we fill this gap based on frequency-resolved friction data from high-precision simulations of three prototypical liquids, including water. Combining with theory, we show that friction in liquids emerges abruptly at a characteristic frequency, beyond which viscous liquids appear as non-dissipative, elastic solids. Concomitantly, the molecules experience Brownian forces that display persistent correlations. A critical test of the generalised Stokes-Einstein relation, mapping the friction of single molecules to the visco-elastic response of the macroscopic sample, disproves the relation for Newtonian fluids, but substantiates it exemplarily for water and a moderately supercooled liquid. The employed approach is suitable to yield insights into vitrification mechanisms and the intriguing mechanical properties of soft materials.}, language = {en} }