@article{StraubeKowalikNetzetal., author = {Straube, Arthur and Kowalik, Bartosz G. and Netz, Roland R. and H{\"o}fling, Felix}, title = {Rapid onset of molecular friction in liquids bridging between the atomistic and hydrodynamic pictures}, series = {Commun. Phys.}, volume = {3}, journal = {Commun. Phys.}, publisher = {Nature}, doi = {10.1038/s42005-020-0389-0}, pages = {126}, abstract = {Friction in liquids arises from conservative forces between molecules and atoms. Although the hydrodynamics at the nanoscale is subject of intense research and despite the enormous interest in the non-Markovian dynamics of single molecules and solutes, the onset of friction from the atomistic scale so far could not be demonstrated. Here, we fill this gap based on frequency-resolved friction data from high-precision simulations of three prototypical liquids, including water. Combining with theory, we show that friction in liquids emerges abruptly at a characteristic frequency, beyond which viscous liquids appear as non-dissipative, elastic solids. Concomitantly, the molecules experience Brownian forces that display persistent correlations. A critical test of the generalised Stokes-Einstein relation, mapping the friction of single molecules to the visco-elastic response of the macroscopic sample, disproves the relation for Newtonian fluids, but substantiates it exemplarily for water and a moderately supercooled liquid. The employed approach is suitable to yield insights into vitrification mechanisms and the intriguing mechanical properties of soft materials.}, language = {en} } @article{StraubeWinkelmannSchuetteetal., author = {Straube, Arthur and Winkelmann, Stefanie and Sch{\"u}tte, Christof and H{\"o}fling, Felix}, title = {Stochastic pH oscillations in a model of the urea-urease reaction confined to lipid vesicles}, series = {J. Phys. Chem. Lett.}, volume = {12}, journal = {J. Phys. Chem. Lett.}, doi = {10.1021/acs.jpclett.1c03016}, pages = {9888 -- 9893}, abstract = {The urea-urease clock reaction is a pH switch from acid to basic that can turn into a pH oscillator if it occurs inside a suitable open reactor. We numerically study the confinement of the reaction to lipid vesicles, which permit the exchange with an external reservoir by differential transport, enabling the recovery of the pH level and yielding a constant supply of urea molecules. For microscopically small vesicles, the discreteness of the number of molecules requires a stochastic treatment of the reaction dynamics. Our analysis shows that intrinsic noise induces a significant statistical variation of the oscillation period, which increases as the vesicles become smaller. The mean period, however, is found to be remarkably robust for vesicle sizes down to approximately 200 nm, but the periodicity of the rhythm is gradually destroyed for smaller vesicles. The observed oscillations are explained as a canard-like limit cycle that differs from the wide class of conventional feedback oscillators.}, language = {en} } @article{delRazoFroembergStraubeetal., author = {del Razo, Mauricio and Fr{\"o}mberg, Daniela and Straube, Arthur and Sch{\"u}tte, Christof and H{\"o}fling, Felix and Winkelmann, Stefanie}, title = {A probabilistic framework for particle-based reaction-diffusion dynamics using classical Fock space representations}, series = {Letters in Mathematical Physics}, volume = {112}, journal = {Letters in Mathematical Physics}, number = {49}, doi = {10.1007/s11005-022-01539-w}, language = {en} } @article{StraubeWinkelmannHoefling, author = {Straube, Arthur and Winkelmann, Stefanie and H{\"o}fling, Felix}, title = {Accurate reduced models for the pH oscillations in the urea-urease reaction confined to giant lipid vesicles}, series = {The Journal of Physical Chemistry B}, volume = {127}, journal = {The Journal of Physical Chemistry B}, number = {13}, doi = {10.1021/acs.jpcb.2c09092}, pages = {2955 -- 2967}, abstract = {This theoretical study concerns a pH oscillator based on the urea-urease reaction confined to giant lipid vesicles. Under suitable conditions, differential transport of urea and hydrogen ion across the unilamellar vesicle membrane periodically resets the pH clock that switches the system from acid to basic, resulting in self-sustained oscillations. We analyse the structure of the phase flow and of the limit cycle, which controls the dynamics for giant vesicles and dominates the pronouncedly stochastic oscillations in small vesicles of submicrometer size. To this end, we derive reduced models, which are amenable to analytic treatments that are complemented by numerical solutions, and obtain the period and amplitude of the oscillations as well as the parameter domain, where oscillatory behavior persists. We show that the accuracy of these predictions is highly sensitive to the employed reduction scheme. In particular, we suggest an accurate two-variable model and show its equivalence to a three-variable model that admits an interpretation in terms of a chemical reaction network. The faithful modeling of a single pH oscillator appears crucial for rationalizing experiments and understanding communication of vesicles and synchronization of rhythms.}, language = {en} } @article{StraubeHoefling, author = {Straube, Arthur and H{\"o}fling, Felix}, title = {Depinning transition of self-propelled particles}, abstract = {A depinning transition is observed in a variety of contexts when a certain threshold force must be applied to drive a system out of an immobile state. A well-studied example is the depinning of colloidal particles from a corrugated landscape, whereas its active-matter analogue has remained unexplored. We discuss how active noise due to self-propulsion impacts the nature of the transition: it causes a change of the critical exponent from 1/2 for quickly reorienting particles to 3/2 for slowly reorienting ones. In between these analytically tractable limits, the drift velocity exhibits a superexponential behavior as is corroborated by high-precision data. Giant diffusion phenomena occur in the two different regimes. Our predictions appear amenable to experimental tests, lay foundations for insight into the depinning of collective variables in active matter, and are relevant for any system with a saddle-node bifurcation in the presence of a bounded noise.}, language = {en} } @misc{StraubeWinkelmannHoefling, author = {Straube, Arthur and Winkelmann, Stefanie and H{\"o}fling, Felix}, title = {Accurate reduced models for the pH oscillations in the urea-urease reaction confined to giant lipid vesicles}, issn = {1438-0064}, doi = {10.12752/8817}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88179}, abstract = {Our theoretical study concerns an urea-urease-based pH oscillator confined to giant lipid vesicles. Under suitable conditions, differential transport of urea and hydrogen ion across the unilamellar vesicle membrane periodically resets the pH clock that switches the system from acid to basic, resulting in self-sustained oscillations. We analyse the structure of the limit cycle, which controls the dynamics for giant vesicles and dominates the strongly stochastic oscillations in small vesicles of submicrometer size. To this end, we derive reduced models, amenable to analytic treatments, and show that the accuracy of predictions, including the period of oscillations, is highly sensitive to the choice of the reduction scheme. In particular, we suggest an accurate two-variable model and show its equivalence to a three-variable model that admits an interpretation in terms of a chemical reaction network. The accurate description of a single pH oscillator appears crucial for rationalizing experiments and understanding communication of vesicles and synchronization of rhythms.}, language = {en} }