@article{VierhausFuegenschuhGottwaldetal., author = {Vierhaus, Ingmar and F{\"u}genschuh, Armin and Gottwald, Robert Lion and Gr{\"o}sser, Stefan}, title = {Using white-box nonlinear optimization methods in system dynamics policy improvement}, series = {System Dynamics Review}, volume = {33}, journal = {System Dynamics Review}, number = {2}, doi = {10.1002/sdr.1583}, pages = {138 -- 168}, abstract = {We present a new strategy for the direct optimization of the values of policy functions. This approach is particularly well suited to model actors with a global perspective on the system and relies heavily on modern mathematical white-box optimization methods. We demonstrate our strategy on two classical models: market growth and World2. Each model is first transformed into an optimization problem by defining how the actor can influence the models' dynamics and by choosing objective functions to measure improvements. To improve comparability between different runs, we also introduce a comparison measure for possible interventions. We solve the optimization problems, discuss the resulting policies and compare them to the existing results from the literature. In particular, we present a run of the World2 model which significantly improves the published "towards a global equilibrium" run with equal cost of intervention.}, language = {en} } @article{HumpolaLehmannFuegenschuh, author = {Humpola, Jesco and Lehmann, Thomas and F{\"u}genschuh, Armin}, title = {A primal heuristic for optimizing the topology of gas networks based on dual information}, series = {EURO Journal on Computational Optimization}, volume = {3}, journal = {EURO Journal on Computational Optimization}, number = {1}, doi = {10.1007/s13675-014-0029-0}, pages = {53 -- 78}, abstract = {We present a novel heuristic to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network's capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the nonlinearities by linear outer approximation and spatial branching. At certain nodes of the branching tree, we compute a KKT point of a nonlinear relaxation. Based on the information from the KKT point we alter some of the binary variables in a locally promising way exploiting our problem-specific structure. On a test set of real-world instances, we are able to increase the chance of identifying feasible solutions by some order of magnitude compared to standard MINLP heuristics that are already built in the general-purpose MINLP solver SCIP.}, language = {en} }