@article{SchimunekSeidlElezetal.2023, author = {Schimunek, Johannes and Seidl, Philipp and Elez, Katarina and Hempel, Tim and Le, Tuan and No{\´e}, Frank and Olsson, Simon and Raich, Llu{\´i}s and Winter, Robin and Gokcan, Hatice and Gusev, Filipp and Gutkin, Evgeny M. and Isayev, Olexandr and Kurnikova, Maria G. and Narangoda, Chamali H. and Zubatyuk, Roman and Bosko, Ivan P. and Furs, Konstantin V. and Karpenko, Anna D. and Kornoushenko, Yury V. and Shuldau, Mikita and Yushkevich, Artsemi and Benabderrahmane, Mohammed B. and Bousquet-Melou, Patrick and Bureau, Ronan and Charton, Beatrice and Cirou, Bertrand C. and Gil, G{\´e}rard and Allen, William J. and Sirimulla, Suman and Watowich, Stanley and Antonopoulos, Nick and Epitropakis, Nikolaos and Krasoulis, Agamemnon and Itsikalis, Vassilis and Theodorakis, Stavros and Kozlovskii, Igor and Maliutin, Anton and Medvedev, Alexander and Popov, Petr and Zaretckii, Mark and Eghbal-Zadeh, Hamid and Halmich, Christina and Hochreiter, Sepp and Mayr, Andreas and Ruch, Peter and Widrich, Michael and Berenger, Francois and Kumar, Ashutosh and Yamanishi, Yoshihiro and Zhang, Kam Y. J. and Bengio, Emmanuel and Bengio, Yoshua and Jain, Moksh J. and Korablyov, Maksym and Liu, Cheng-Hao and Marcou, Gilles and Glaab, Enrico and Barnsley, Kelly and Iyengar, Suhasini M. and Ondrechen, Mary Jo and Haupt, V. Joachim and Kaiser, Florian and Schroeder, Michael and Pugliese, Luisa and Albani, Simone and Athanasiou, Christina and Beccari, Andrea and Carloni, Paolo and D'Arrigo, Giulia and Gianquinto, Eleonora and Goßen, Jonas and Hanke, Anton and Joseph, Benjamin P. and Kokh, Daria B. and Kovachka, Sandra and Manelfi, Candida and Mukherjee, Goutam and Mu{\~n}iz-Chicharro, Abraham and Musiani, Francesco and Nunes-Alves, Ariane and Paiardi, Giulia and Rossetti, Giulia and Sadiq, S. Kashif and Spyrakis, Francesca and Talarico, Carmine and Tsengenes, Alexandros and Wade, Rebecca C. and Copeland, Conner and Gaiser, Jeremiah and Olson, Daniel R. and Roy, Amitava and Venkatraman, Vishwesh and Wheeler, Travis J. and Arthanari, Haribabu and Blaschitz, Klara and Cespugli, Marco and Durmaz, Vedat and Fackeldey, Konstantin and Fischer, Patrick D. and Gorgulla, Christoph and Gruber, Christian and Gruber, Karl and Hetmann, Michael and Kinney, Jamie E. and Padmanabha Das, Krishna M. and Pandita, Shreya and Singh, Amit and Steinkellner, Georg and Tesseyre, Guilhem and Wagner, Gerhard and Wang, Zi-Fu and Yust, Ryan J. and Druzhilovskiy, Dmitry S. and Filimonov, Dmitry A. and Pogodin, Pavel V. and Poroikov, Vladimir and Rudik, Anastassia V. and Stolbov, Leonid A. and Veselovsky, Alexander V. and De Rosa, Maria and De Simone, Giada and Gulotta, Maria R. and Lombino, Jessica and Mekni, Nedra and Perricone, Ugo and Casini, Arturo and Embree, Amanda and Gordon, D. Benjamin and Lei, David and Pratt, Katelin and Voigt, Christopher A. and Chen, Kuang-Yu and Jacob, Yves and Krischuns, Tim and Lafaye, Pierre and Zettor, Agn{\`e}s and Rodr{\´i}guez, M. Luis and White, Kris M. and Fearon, Daren and Von Delft, Frank and Walsh, Martin A. and Horvath, Dragos and Brooks III, Charles L. and Falsafi, Babak and Ford, Bryan and Garc{\´i}a-Sastre, Adolfo and Yup Lee, Sang and Naffakh, Nadia and Varnek, Alexandre and Klambauer, G{\"u}nter and Hermans, Thomas M.}, title = {A community effort in SARS-CoV-2 drug discovery}, series = {Molecular Informatics}, volume = {43}, journal = {Molecular Informatics}, number = {1}, doi = {https://doi.org/10.1002/minf.202300262}, pages = {e202300262}, year = {2023}, language = {en} } @article{SekuboyinaHusseiniBayatetal., author = {Sekuboyina, Anjany and Husseini, Malek E. and Bayat, Amirhossein and L{\"o}ffler, Maximilian and Liebl, Hans and Li, Hongwei and Tetteh, Giles and Kukačka, Jan and Payer, Christian and Štern, Darko and Urschler, Martin and Chen, Maodong and Cheng, Dalong and Lessmann, Nikolas and Hu, Yujin and Wang, Tianfu and Yang, Dong and Xu, Daguang and Ambellan, Felix and Amiranashvili, Tamaz and Ehlke, Moritz and Lamecker, Hans and Lehnert, Sebastian and Lirio, Marilia and de Olaguer, Nicol{\´a}s P{\´e}rez and Ramm, Heiko and Sahu, Manish and Tack, Alexander and Zachow, Stefan and Jiang, Tao and Ma, Xinjun and Angerman, Christoph and Wang, Xin and Brown, Kevin and Kirszenberg, Alexandre and Puybareau, {\´E}lodie and Chen, Di and Bai, Yiwei and Rapazzo, Brandon H. and Yeah, Timyoas and Zhang, Amber and Xu, Shangliang and Hou, Feng and He, Zhiqiang and Zeng, Chan and Xiangshang, Zheng and Liming, Xu and Netherton, Tucker J. and Mumme, Raymond P. and Court, Laurence E. and Huang, Zixun and He, Chenhang and Wang, Li-Wen and Ling, Sai Ho and Huynh, L{\^e} Duy and Boutry, Nicolas and Jakubicek, Roman and Chmelik, Jiri and Mulay, Supriti and Sivaprakasam, Mohanasankar and Paetzold, Johannes C. and Shit, Suprosanna and Ezhov, Ivan and Wiestler, Benedikt and Glocker, Ben and Valentinitsch, Alexander and Rempfler, Markus and Menze, Bj{\"o}rn H. and Kirschke, Jan S.}, title = {VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images}, series = {Medical Image Analysis}, volume = {73}, journal = {Medical Image Analysis}, doi = {10.1016/j.media.2021.102166}, abstract = {Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.}, language = {en} } @article{GorgullaDasLeighetal., author = {Gorgulla, Christoph and Das, Krishna M. Padmanabha and Leigh, Kendra E and Cespugli, Marco and Fischer, Patrick D. and Wang, Zi-Fu and Tesseyre, Guilhem and Pandita, Shreya and Shnapir, Alex and Calderaio, Anthony and Hutcheson, Colin and Gechev, Minko and Rose, Alexander and Lewis, Noam and Yaffe, Erez and Luxenburg, Roni and Herce, Henry D. and Durmaz, Vedat and Halazonetis, Thanos D. and Fackeldey, Konstantin and Patten, Justin J. and Chuprina, Alexander and Dziuba, Igor and Plekhova, Alla and Moroz, Yurii and Radchenko, Dmytro and Tarkhanova, Olga and Yavnyuk, Irina and Gruber, Christian C. and Yust, Ryan and Payne, Dave and N{\"a}{\"a}r, Anders M. and Namchuk, Mark N. and Davey, Robert A. and Wagner, Gerhard and Kinney, Jamie and Arthanari, Haribabu}, title = {A Multi-Pronged Approach Targeting SARS-CoV-2 Proteins Using Ultra-Large Virtual Screening}, series = {iScience}, volume = {24}, journal = {iScience}, number = {2}, publisher = {CellPress}, doi = {10.26434/chemrxiv.12682316}, pages = {102021}, abstract = {Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics. Here we leverage the power of our recently developed in silico screening platform, VirtualFlow, to identify inhibitors that target SARS-CoV-2. VirtualFlow is able to efficiently harness the power of computing clusters and cloud-based computing platforms to carry out ultra-large scale virtual screens. In this unprecedented structure-based multi-target virtual screening campaign, we have used VirtualFlow to screen an average of approximately 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets in the cloud. In addition to targeting the active sites of viral enzymes, we also target critical auxiliary sites such as functionally important protein-protein interaction interfaces. This multi-target approach not only increases the likelihood of finding a potent inhibitor, but could also help identify a collection of anti-coronavirus drugs that would retain efficacy in the face of viral mutation. Drugs belonging to different regimen classes could be combined to develop possible combination therapies, and top hits that bind at highly conserved sites would be potential candidates for further development as coronavirus drugs. Here, we present the top 200 in silico hits for each target site. While in-house experimental validation of some of these compounds is currently underway, we want to make this array of potential inhibitor candidates available to researchers worldwide in consideration of the pressing need for fast-tracked drug development.}, language = {en} } @misc{AlexanderFiedler, author = {Alexander, J. C. and Fiedler, Bernold}, title = {Global Decoupling of Coupled Symmetric Oscillators.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-113}, number = {SC-88-03}, abstract = {We model a symmetric system of coupled oscillators as a graph with symmetry group \$\gamma\$. Each vertex of the graph represents an "oscillator" or a "cell" of reactants. The magnitude (concentration) of the reactants in the \$ i \$ th cell is represented by a vector \$ x^i \$. The edges represent the coupling of the cells. The cells are assumed to evolve by identical reaction-diffusion equation which depends on the sum of the reactants in the nearest neighbors. Thus the dynamics of the system is described by a nonlinear differential system \begin{flushleft} \[ \mbox {(*) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \dot{x}^i = f (x^i,\sum_{j \in N_i} x^j), \mbox { \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \] \end{flushleft} where the sum ranges over the set \$ N_i \$ of neighbors of cell \$ i \$ . If \$ f \$ also has a symmetry (e.g., oddness), there are geometric conditions on the graph such that the nonlinear system \$ (*) \$ decouples globally into a product flow on certain sums of isotropy subspaces. Thus we may detect higher-dimensional tori of solutions of \$ (*) \$ which are not amenable to other types of analysis. We present a number of examples, such as bipartite graphs, complete graphs, the square, the octahedron, and a 6-dimensional cube.}, language = {en} }