@misc{Fischer, author = {Fischer, Alexander}, title = {An Uncoupling-Coupling Technique for Markov Chain Monte Carlo Methods}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5720}, number = {00-04}, abstract = {Uncoupling-coupling Monte Carlo (UCMC) combines uncoupling techniques for finite Markov chains with Markov chain Monte Carlo methodology. By determining almost invariant sets of the associated Markov operator, the Monte Carlo sampling splits by a hierarchical annealing process into the essential regions of the state space; therefore UCMC aims at avoiding the typical metastable behavior of Monte Carlo techniques. From the viewpoint of Monte Carlo, a slowly converging long-time Markov chain is replaced by a limited number of rapidly mixing short-time ones. The correct weighting factors for the various Markov chains are obtained via a coupling matrix, that connects the samplings from the different almost invariant sets. The underlying mathematical structure of this approach is given by a general examination of the uncoupling-coupling procedure. Furthermore, the overall algorithmic scheme of UCMC is applied to the \$n\$-pentane molecule, a well-known example from molecular dynamics.}, language = {en} } @misc{SchuetteFischerHuisingaetal., author = {Sch{\"u}tte, Christof and Fischer, Alexander and Huisinga, Wilhelm and Deuflhard, Peter}, title = {A Direct Approach to Conformational Dynamics based on Hybrid Monte Carlo}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3889}, number = {SC-98-45}, abstract = {Recently, a novel concept for the computation of essential features of the dynamics of Hamiltonian systems (such as molecular dynamics) has been proposed. The realization of this concept had been based on subdivision techniques applied to the Frobenius--Perron operator for the dynamical system. The present paper suggests an alternative but related concept that merges the conceptual advantages of the dynamical systems approach with the appropriate statistical physics framework. This approach allows to define the phrase ``conformation'' in terms of the dynamical behavior of the molecular system and to characterize the dynamical stability of conformations. In a first step, the frequency of conformational changes is characterized in statistical terms leading to the definition of some Markov operator \$T\$ that describes the corresponding transition probabilities within the canonical ensemble. In a second step, a discretization of \$T\$ via specific hybrid Monte Carlo techniques is shown to lead to a stochastic matrix \$P\$. With these theoretical preparations, an identification algorithm for conformations is applicable. It is demonstrated that the discretization of \$T\$ can be restricted to few essential degrees of freedom so that the combinatorial explosion of discretization boxes is prevented and biomolecular systems can be attacked. Numerical results for the n-pentane molecule and the triribonucleotide adenylyl\emph{(3'-5')}cytidylyl\emph{(3'-5')}cytidin are given and interpreted.}, language = {en} } @misc{FischerCordesSchuette, author = {Fischer, Alexander and Cordes, Frank and Sch{\"u}tte, Christof}, title = {Hybrid Monte Carlo with Adaptive Temperature in a Mixed-Canonical Ensemble: Efficient Conformational Analysis of RNA}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3364}, number = {SC-97-67}, abstract = {A hybrid Monte Carlo method with adaptive temperature choice is presented, which exactly generates the distribution of a mixed-canonical ensemble composed of two canonical ensembles at low and high temperature. The analysis of resulting Markov chains with the reweighting technique shows an efficient sampling of the canonical distribution at low temperature, whereas the high temperature component facilitates conformational transitions, which allows shorter simulation times. \\The algorithm was tested by comparing analytical and numerical results for the small n-butane molecule before simulations were performed for a triribonucleotide. Sampling the complex multi-minima energy landscape of these small RNA segments, we observed enforced crossing of energy barriers.}, language = {en} } @misc{DeuflhardHuisingaFischeretal., author = {Deuflhard, Peter and Huisinga, Wilhelm and Fischer, Alexander and Sch{\"u}tte, Christof}, title = {Identification of Almost Invariant Aggregates in Reversible Nearly Uncoupled Markov Chains}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3469}, number = {SC-98-03}, abstract = {The topic of the present paper bas been motivated by a recent computational approach to identify chemical conformations and conformational changes within molecular systems. After proper discretization, the conformations show up as almost invariant aggregates in reversible nearly uncoupled Markov chains. Most of the former work on this subject treated the direct problem: given the aggregates, analyze the loose coupling in connection with the computation of the stationary distribution (aggregation/disaggregation techniques). In contrast to that the present paper focuses on the inverse problem: given the system as a whole, identify the almost invariant aggregates together with the associated transition probabilites. A rather simple and robust algorithm is suggested and illustrated by its application to the n-pentane molecule.}, language = {en} } @misc{SchuetteFischerHuisingaetal., author = {Sch{\"u}tte, Christof and Fischer, Alexander and Huisinga, Wilhelm and Deuflhard, Peter}, title = {A Hybrid Monte Carlo Method for Essential Molecular Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3474}, number = {SC-98-04}, abstract = {Recently, a novel concept for the computation of essential features of Hamiltonian systems (such as those arising in molecular dynamics) has been proposed. The realization of that concept was based on subdivision techniques applied to the Frobenius--Perron operator for the dynamical system. The present paper suggests an alternative but related concept based on statistical mechanics, which allows to attack realistic molecular systems. In a first step, the frequency of conformational changes is characterized in statistical terms leading to the definition of some Markov operator \$T\$ that describes the corresponding transition probabilities within the canonical ensemble. In a second step, a discretization of \$T\$ via hybrid Monte Carlo techniques (based on short term subtrajectories only) is shown to lead to a stochastic matrix \$P\$. With these theoretical preparations, an identification algorithm for conformations is applicable (to be presented elsewhere). Numerical results for the n-pentane molecule are given and interpreted.}, language = {en} } @misc{FischerSchuetteDeuflhardetal., author = {Fischer, Alexander and Sch{\"u}tte, Christof and Deuflhard, Peter and Cordes, Frank}, title = {Hierarchical Uncoupling-Coupling of Metastable Conformations}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6296}, number = {01-03}, abstract = {Uncoupling-coupling Monte Carlo (UCMC) combines uncoupling techniques for finite Markov chains with Markov chain Monte Carlo methodology. UCMC aims at avoiding the typical metastable or trapping behavior of Monte Carlo techniques. From the viewpoint of Monte Carlo, a slowly converging long-time Markov chain is replaced by a limited number of rapidly mixing short-time ones. Therefore, the state space of the chain has to be hierarchically decomposed into its metastable conformations. This is done by means of combining the technique of conformation analysis as recently introduced by the authors, and appropriate annealing strategies. We present a detailed examination of the uncoupling-coupling procedure which uncovers its theoretical background, and illustrates the hierarchical algorithmic approach. Furthermore, application of the UCMC algorithm to the \$n\$-pentane molecule allows us to discuss the effect of its crucial steps in a typical molecular scenario.}, language = {en} } @inproceedings{BockSkibinaFischeretal.2012, author = {Bock, Martin and Skibina, Julia and Fischer, Dorit and Grunwald, R{\"u}diger and Burger, Sven and Beloglazov, Valentin and Steinmeyer, G{\"u}nter}, title = {10-fs pulse delivery through a fiber}, series = {CLEO}, booktitle = {CLEO}, publisher = {Optical Society of America}, doi = {10.1364/CLEO_SI.2012.CTh3G.3}, pages = {CTh3G.3}, year = {2012}, language = {en} } @article{SchuetteFischerHuisingaetal.1999, author = {Sch{\"u}tte, Christof and Fischer, Alexander and Huisinga, Wilhelm and Deuflhard, Peter}, title = {A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo}, series = {J. Comput. Phys.}, volume = {151}, journal = {J. Comput. Phys.}, pages = {146 -- 168}, year = {1999}, language = {en} } @article{FischerCordesSchuette1998, author = {Fischer, Alexander and Cordes, Frank and Sch{\"u}tte, Christof}, title = {Hybrid Monte Carlo with Adaptive Temperature in Mixed-Canonical Ensemble: Efficient conformational analysis of RNA}, series = {J. Comp. Chem.}, volume = {19}, journal = {J. Comp. Chem.}, number = {15}, doi = {10.1002/(SICI)1096-987X(19981130)19:15<1689::AID-JCC2>3.0.CO;2-J}, pages = {1689 -- 1697}, year = {1998}, language = {en} } @inproceedings{FischerSchuetteDeuflhardetal.2002, author = {Fischer, Alexander and Sch{\"u}tte, Christof and Deuflhard, Peter and Cordes, Frank}, title = {Hierarchical Uncoupling-Coupling of Metastable Conformations}, series = {Computational Methods for Macromolecules}, booktitle = {Computational Methods for Macromolecules}, number = {24}, editor = {Schlick, T. and Gan, H.}, publisher = {Springer}, pages = {235 -- 259}, year = {2002}, language = {en} } @article{DeuflhardHuisingaFischeretal.2000, author = {Deuflhard, Peter and Huisinga, Wilhelm and Fischer, Alexander and Sch{\"u}tte, Christof}, title = {Identification of Almost Invariant Aggregates in Reversible Nearly Uncoupled Markov Chains}, series = {Lin. Alg. Appl.}, volume = {315}, journal = {Lin. Alg. Appl.}, pages = {39 -- 59}, year = {2000}, language = {en} } @incollection{EnkeFiedlerFischeretal.2013, author = {Enke, Harry and Fiedler, Norman and Fischer, Thomas and Gnadt, Timo and Ketzan, Erik and Ludwig, Jens and Rathmann, Torsten and St{\"o}ckle, Gabriel and Schintke, Florian}, title = {Leitfaden zum Forschungsdaten-Management}, series = {Leitfaden zum Forschungsdaten-Management}, booktitle = {Leitfaden zum Forschungsdaten-Management}, editor = {Enke, Harry and Ludwig, Jens}, publisher = {Verlag Werner H{\"u}lsbusch, Gl{\"u}ckstadt}, year = {2013}, language = {en} } @masterthesis{Fischer, type = {Bachelor Thesis}, author = {Fischer, Jens V.}, title = {A Gossiping Framework for Scalaris}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-50685}, language = {en} } @inproceedings{SkibinaBockFischeretal., author = {Skibina, Julia and Bock, Martin and Fischer, Dorit and Grunwald, R{\"u}diger and Steinmeyer, G{\"u}nter and Wedell, Reiner and Bretschneider, Mario and Burger, Sven and Beloglazov, Valentin}, title = {10-fs fiber based pulse delivery}, series = {Conference on Lasers, Applications, and Technologies (LAT)}, booktitle = {Conference on Lasers, Applications, and Technologies (LAT)}, pages = {LWF5}, language = {en} } @misc{FischerSchlechte, author = {Fischer, Frank and Schlechte, Thomas}, title = {Strong Relaxations for the Train Timetabling Problem using Connected Configurations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64743}, abstract = {The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.}, language = {en} } @article{FischerGoetschelWeiser, author = {Fischer, Lisa and G{\"o}tschel, Sebastian and Weiser, Martin}, title = {Lossy data compression reduces communication time in hybrid time-parallel integrators}, series = {Comput. Vis. Sci.}, volume = {19}, journal = {Comput. Vis. Sci.}, number = {1}, doi = {10.1007/s00791-018-0293-2}, pages = {19 -- 30}, abstract = {Parallel in time methods for solving initial value problems are a means to increase the parallelism of numerical simulations. Hybrid parareal schemes interleaving the parallel in time iteration with an iterative solution of the individual time steps are among the most efficient methods for general nonlinear problems. Despite the hiding of communication time behind computation, communication has in certain situations a significant impact on the total runtime. Here we present strict, yet no sharp, error bounds for hybrid parareal methods with inexact communication due to lossy data compression, and derive theoretical estimates of the impact of compression on parallel efficiency of the algorithms. These and some computational experiments suggest that compression is a viable method to make hybrid parareal schemes robust with respect to low bandwidth setups.}, language = {en} } @misc{Fischer2017, type = {Master Thesis}, author = {Fischer, Lisa}, title = {On the convergence of inexact time parallel time integration}, pages = {61}, year = {2017}, language = {en} } @inproceedings{FischerSchlechte, author = {Fischer, Frank and Schlechte, Thomas}, title = {Strong Relaxations for the Train Timetabling Problem using Connected Configurations}, series = {17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)}, volume = {59}, booktitle = {17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)}, editor = {D'Angelo, Gianlorenzo and Dollevoet, Twan}, isbn = {978-3-95977-042-2}, doi = {10.4230/OASIcs.ATMOS.2017.11}, abstract = {The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.}, language = {en} } @inproceedings{FischerGrimmKlugetal., author = {Fischer, Frank and Grimm, Boris and Klug, Torsten and Schlechte, Thomas}, title = {A Re-optimization Approach for Train Dispatching}, series = {Operations Research Proceedings 2016}, booktitle = {Operations Research Proceedings 2016}, doi = {10.1007/978-3-319-55702-1_85}, pages = {645 -- 651}, abstract = {The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.}, language = {en} } @inproceedings{FischerSchlechte2015, author = {Fischer, Frank and Schlechte, Thomas}, title = {Comparing two dual relaxations of large scale train timetabling problems}, series = {Proceedings of Conference on Advanced Systems in Public Transport 2015}, booktitle = {Proceedings of Conference on Advanced Systems in Public Transport 2015}, year = {2015}, abstract = {Railway transportation and in particular train timetabling is one of the basic and source application areas of combinatorial optimization and integer programming. We will discuss two well established modeling techniques for the train timetabling problem. In this paper we focus on one major ingredient - the bounding by dual relaxations. We compare two classical dual relaxations of large scale time expanded train timetabling problems - the Lagrangean Dual and Lagrangean Decomposition. We discuss the convergence behavior and show limitations of the Lagrangean Decomposition approach for a configuration based model. We introduce a third dualization approach to overcome those limitations. Finally, we present promising preliminary computational experiments that show that our new approach indeed has superior convergence properties.}, language = {en} }