@inproceedings{FuegenschuhvanVeldhuizenVierhaus, author = {F{\"u}genschuh, Armin and van Veldhuizen, Roel and Vierhaus, Ingmar}, title = {Production Planning for Non-Cooperating Companies with Nonlinear Optimization}, series = {11th Global Conference on Sustainable Manufacturing : Proceedings}, booktitle = {11th Global Conference on Sustainable Manufacturing : Proceedings}, publisher = {Universit{\"a}tsverlag der TU Berlin}, address = {Berlin}, pages = {536 -- 541}, abstract = {We consider a production planning problem where two competing companies are selling their items on a common market. Moreover, the raw material used in the production is a limited non-renewable resource. The revenue per item sold depends on the total amount of items produced by both players. If they collaborate they could apply a production strategy that leads to the highest combined revenue. Usually the formation of such syndicates is prohibited by law; hence we assume that one company does not know how much the other company will produce. We formulate the problem for company A to find an optimal production plan without information on the strategy of company B as a nonlinear mathematical optimization problem. In its naive formulation the model is too large, making its solution practically impossible. After a reformulation we find a much smaller model, which we solve by spatial branch-and-cut methods and linear programming. We discuss the practical implications of our solutions.}, language = {en} } @misc{FuegenschuhvanVeldhuizenVierhaus, author = {F{\"u}genschuh, Armin and van Veldhuizen, Roel and Vierhaus, Ingmar}, title = {Production Planning for Non-Cooperating Companies with Nonlinear Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18163}, abstract = {We consider a production planning problem where two competing companies are selling their items on a common market. Moreover, the raw material used in the production is a limited non-renewable resource. The revenue per item sold depends on the total amount of items produced by both players. If they collaborate they could apply a production strategy that leads to the highest combined revenue. Usually the formation of such syndicates is prohibited by law; hence we assume that one company does not know how much the other company will produce. We formulate the problem for company A to find an optimal production plan without information on the strategy of company B as a nonlinear mathematical optimization problem. In its naive formulation the model is too large, making its solution practically impossible. After a reformulation we find a much smaller model, which we solve by spatial branch-and-cut methods and linear programming. We discuss the practical implications of our solutions.}, language = {en} }