@article{EhlkeRammLameckeretal.2013, author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Hege, Hans-Christian and Zachow, Stefan}, title = {Fast Generation of Virtual X-ray Images for Reconstruction of 3D Anatomy}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {19}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2013.159}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-35928}, pages = {2673 -- 2682}, year = {2013}, language = {en} } @inproceedings{RammVictoriaMorilloTodtetal.2013, author = {Ramm, Heiko and Victoria Morillo, Oscar Salvador and Todt, Ingo and Schirmacher, Hartmut and Ernst, Arneborg and Zachow, Stefan and Lamecker, Hans}, title = {Visual Support for Positioning Hearing Implants}, series = {Proceedings of the 12th annual meeting of the CURAC society}, booktitle = {Proceedings of the 12th annual meeting of the CURAC society}, editor = {Freysinger, Wolfgang}, pages = {116 -- 120}, year = {2013}, language = {en} } @article{KainmuellerLameckerHelleretal.2013, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Heller, Markus O. and Weber, Britta and Hege, Hans-Christian and Zachow, Stefan}, title = {Omnidirectional Displacements for Deformable Surfaces}, series = {Medical Image Analysis}, volume = {17}, journal = {Medical Image Analysis}, number = {4}, publisher = {Elsevier}, doi = {10.1016/j.media.2012.11.006}, pages = {429 -- 441}, year = {2013}, language = {en} } @misc{EhlkeRammLameckeretal., author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Hege, Hans-Christian and Zachow, Stefan}, title = {Fast Generation of Virtual X-ray Images from Deformable Tetrahedral Meshes}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-41896}, abstract = {We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g.\ pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach contributes in orthopedic surgery, where 3D anatomy information needs to be extracted from 2D X-rays to support surgeons in better planning joint replacements.}, language = {en} } @misc{RammMorilloVictoriaTodtetal., author = {Ramm, Heiko and Morillo Victoria, Oscar Salvador and Todt, Ingo and Schirmacher, Hartmut and Ernst, Arneborg and Zachow, Stefan and Lamecker, Hans}, title = {Visual Support for Positioning Hearing Implants}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42495}, abstract = {We present a software planning tool that provides intuitive visual feedback for finding suitable positions of hearing implants in the human temporal bone. After an automatic reconstruction of the temporal bone anatomy the tool pre-positions the implant and allows the user to adjust its position interactively with simple 2D dragging and rotation operations on the bone's surface. During this procedure, visual elements like warning labels on the implant or color encoded bone density information on the bone geometry provide guidance for the determination of a suitable fit.}, language = {en} } @misc{GreweLameckerZachow2013, author = {Grewe, Carl Martin and Lamecker, Hans and Zachow, Stefan}, title = {Landmark-based Statistical Shape Analysis}, series = {Auxology - Studying Human Growth and Development url}, journal = {Auxology - Studying Human Growth and Development url}, editor = {Hermanussen, Michael}, publisher = {Schweizerbart Verlag, Stuttgart}, pages = {199 -- 201}, year = {2013}, language = {en} }