@misc{PowellWeiser, author = {Powell, Gary and Weiser, Martin}, title = {Container Adaptors}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-4308}, number = {SC-99-41}, abstract = {The C++ standard template library has many useful containers for data. The standard library includes two adpators, queue, and stack. The authors have extended this model along the lines of relational database semantics. Sometimes the analogy is striking, and we will point it out occasionally. An adaptor allows the standard algorithms to be used on a subset or modification of the data without having to copy the data elements into a new container. The authors provide many useful adaptors which can be used together to produce interesting views of data in a container.}, language = {en} } @inproceedings{DhanakotiMaddocksWeiser, author = {Dhanakoti, Siva Prasad Chakri and Maddocks, John and Weiser, Martin}, title = {Navigation of Concentric Tube Continuum Robots using Optimal Control}, series = {Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics}, booktitle = {Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics}, doi = {10.5220/0011271000003271}, pages = {146 -- 154}, abstract = {Recently developed Concentric Tube Continuum Robots (CTCRs) are widely exploited in, for example in minimally invasive surgeries which involve navigating inside narrow body cavities close to sensitive regions. These CTCRs can be controlled by extending and rotating the tubes in order to reach a target point or perform some task. The robot must deviate as little as possible from this narrow space and avoid damaging neighbouring tissue. We consider \emph{open-loop} optimal control of CTCRs parameterized over pseudo-time, primarily aiming at minimizing the robot's working volume during its motion. External loads acting on the system like tip loads or contact with tissues are not considered here. We also discussed the inclusion of tip's orientation in the optimal framework to perform some tasks. We recall a quaternion-based formulation of the robot configuration, discuss discretization, develop optimization objectives addressing different criteria, and investigate their impact on robot path planning for several numerical examples. This optimal framework can be applied to any backbone based continuum robots.}, language = {en} } @article{CheginiKopanicakovaKrauseetal., author = {Chegini, Fatemeh and Kopanicakova, Alena and Krause, Rolf and Weiser, Martin}, title = {Efficient Identification of Scars using Heterogeneous Model Hierarchies}, series = {EP Europace}, volume = {23}, journal = {EP Europace}, doi = {10.1093/europace/euaa402}, pages = {i113 -- i122}, abstract = {Aims. Detection and quantification of myocardial scars are helpful both for diagnosis of heart diseases and for building personalized simulation models. Scar tissue is generally charac­terized by a different conduction of electrical excitation. We aim at estimating conductivity-related parameters from endocardial mapping data, in particular the conductivity tensor. Solving this inverse problem requires computationally expensive monodomain simulations on fine discretizations. Therefore, we aim at accelerating the estimation using a multilevel method combining electrophysiology models of different complexity, namely the mono­domain and the eikonal model. Methods. Distributed parameter estimation is performed by minimizing the misfit between simulated and measured electrical activity on the endocardial surface, subject to the mono­domain model and regularization, leading to a constrained optimization problem. We formulate this optimization problem, including the modeling of scar tissue and different regularizations, and design an efficient iterative solver. We consider monodomain grid hierarchies and monodomain-eikonal model hierarchies in a recursive multilevel trust-region method. Results. From several numerical examples, both the efficiency of the method and the estimation quality, depending on the data, are investigated. The multilevel solver is significantly faster than a comparable single level solver. Endocardial mapping data of realistic density appears to be just sufficient to provide quantitatively reasonable estimates of location, size, and shape of scars close to the endocardial surface. Conclusion. In several situations, scar reconstruction based on eikonal and monodomain models differ significantly, suggesting the use of the more accurate but more expensive monodomain model for this purpose. Still, eikonal models can be utilized to accelerate the computations considerably, enabling the use of complex electrophysiology models for estimating myocardial scars from endocardial mapping data.}, language = {en} } @inproceedings{WeiserChegini, author = {Weiser, Martin and Chegini, Fatemeh}, title = {Adaptive multirate integration of cardiac electrophysiology with spectral deferred correction methods}, series = {CMBE22 - 7th International Conference on Computational \& Mathematical Biomedical Engineering}, booktitle = {CMBE22 - 7th International Conference on Computational \& Mathematical Biomedical Engineering}, pages = {528 -- 531}, abstract = {The highly localized dynamics of cardiac electrophysiology models call for adaptive simulation methods. Unfortunately, the overhead incurred by classical mesh adaptivity turns out to outweigh the performance improvements achieved by reducing the problem size. Here, we explore a different approach to adaptivity based on algebraic degree of freedom subset selection during spectral deferred correction sweeps, which realizes a kind of multirate higher order integration. Numerical experience indicates a significant performance increase compared to uniform simulations.}, language = {en} } @misc{WeiserChegini, author = {Weiser, Martin and Chegini, Fatemeh}, title = {Higher-order time integration using spectral deferred correction method (SDC) in a cell by cell discretization of cardiac excitation}, doi = {10.35097/716}, abstract = {This C++ code implements a cell-by-cell model of cardiac excitation using a piecewise-continuous finite element discretization and spectral deferred correction time stepping. The code is based on the Kaskade 7 finite element toolbox and forms a prototype for the µCarp code to be implemented in the Microcard project.}, language = {en} } @article{CardereraPokuttaSchuetteetal., author = {Carderera, Alejandro and Pokutta, Sebastian and Sch{\"u}tte, Christof and Weiser, Martin}, title = {CINDy: Conditional gradient-based Identification of Non-linear Dynamics - Noise-robust recovery}, series = {Journal of Computational and Applied Mathematics}, journal = {Journal of Computational and Applied Mathematics}, abstract = {Governing equations are essential to the study of nonlinear dynamics, often enabling the prediction of previously unseen behaviors as well as the inclusion into control strategies. The discovery of governing equations from data thus has the potential to transform data-rich fields where well-established dynamical models remain unknown. This work contributes to the recent trend in data-driven sparse identification of nonlinear dynamics of finding the best sparse fit to observational data in a large library of potential nonlinear models. We propose an efficient first-order Conditional Gradient algorithm for solving the underlying optimization problem. In comparison to the most prominent alternative algorithms, the new algorithm shows significantly improved performance on several essential issues like sparsity-induction, structure-preservation, noise robustness, and sample efficiency. We demonstrate these advantages on several dynamics from the field of synchronization, particle dynamics, and enzyme chemistry.}, language = {en} } @inproceedings{GanderKrauseWeiseretal., author = {Gander, Lia and Krause, Rolf and Weiser, Martin and Costabal, Francisco and Pezzuto, Simone}, title = {On the Accuracy of Eikonal Approximations in Cardiac Electrophysiology in the Presence of Fibrosis}, series = {Functional Imaging and Modeling of the Heart. FIMH 2023.}, volume = {13958}, booktitle = {Functional Imaging and Modeling of the Heart. FIMH 2023.}, publisher = {Springer, Cham}, doi = {10.1007/978-3-031-35302-4_14}, abstract = {Fibrotic tissue is one of the main risk factors for cardiac arrhythmias. It is therefore a key component in computational studies. In this work, we compare the monodomain equation to two eikonal models for cardiac electrophysiology in the presence of fibrosis. We show that discontinuities in the conductivity field, due to the presence of fibrosis, introduce a delay in the activation times. The monodomain equation and eikonal-diffusion model correctly capture these delays, contrarily to the classical eikonal equation. Importantly, a coarse space discretization of the monodomain equation amplifies these delays, even after accounting for numerical error in conduction velocity. The numerical discretization may also introduce artificial conduction blocks and hence increase propagation complexity. Therefore, some care is required when comparing eikonal models to the discretized monodomain equation.}, language = {en} } @article{BorndoerferDaneckerWeiser, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {Error Bounds for Discrete-Continuous Free Flight Trajectory Optimization}, series = {Journal of Optimization Theory and Applications}, volume = {198}, journal = {Journal of Optimization Theory and Applications}, doi = {10.1007/s10957-023-02264-7}, pages = {830 -- 856}, abstract = {Flight planning, the computation of optimal routes in view of flight time and fuel consumption under given weather conditions, is traditionally done by finding globally shortest paths in a predefined airway network. Free flight trajectories, not restricted to a network, have the potential to reduce the costs significantly, and can be computed using locally convergent continuous optimal control methods. Hybrid methods that start with a discrete global search and refine with a fast continuous local optimization combine the best properties of both approaches, but rely on a good switchover, which requires error estimates for discrete paths relative to continuous trajectories. Based on vertex density and local complete connectivity, we derive localized and a priori bounds for the flight time of discrete paths relative to the optimal continuous trajectory, and illustrate their properties on a set of benchmark problems. It turns out that localization improves the error bound by four orders of magnitude, but still leaves ample opportunities for tighter bounds using a posteriori error estimators.}, language = {en} } @misc{BorndoerferDaneckerWeiser, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {A Discrete-Continuous Algorithm for Free Flight Planning}, issn = {1438-0064}, doi = {10.3390/a14010004}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81343}, abstract = {We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.}, language = {en} } @inproceedings{BorndoerferDaneckerWeiser, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {A Discrete-Continuous Algorithm for Globally Optimal Free Flight Trajectory Optimization}, series = {22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)}, volume = {106}, booktitle = {22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)}, doi = {10.4230/OASIcs.ATMOS.2022.2}, pages = {1 -- 13}, abstract = {We present an efficient algorithm that finds a globally optimal solution to the 2D Free Flight Trajectory Optimization Problem (aka Zermelo Navigation Problem) up to arbitrary precision in finite time. The algorithm combines a discrete and a continuous optimization phase. In the discrete phase, a set of candidate paths that densely covers the trajectory space is created on a directed auxiliary graph. Then Yen's algorithm provides a promising set of discrete candidate paths which subsequently undergo a locally convergent refinement stage. Provided that the auxiliary graph is sufficiently dense, the method finds a path that lies within the convex domain around the global minimizer. From this starting point, the second stage will converge rapidly to the optimum. The density of the auxiliary graph depends solely on the wind field, and not on the accuracy of the solution, such that the method inherits the superior asymptotic convergence properties of the optimal control stage.}, language = {en} }