@article{BoegeFritzeGoergenetal., author = {Boege, Tobias and Fritze, Ren{\´e} and G{\"o}rgen, Christiane and Hanselmann, Jeroen and Iglezakis, Dorothea and Kastner, Lars and Koprucki, Thomas and Krause, Tabea and Lehrenfeld, Christoph and Polla, Silvia and Reidelbach, Marco and Riedel, Christian and Saak, Jens and Schembera, Bj{\"o}rn and Tabelow, Karsten and Weber, Marcus}, title = {Research-Data Management Planning in the German Mathematical Community}, series = {Eur. Math. Soc. Mag.}, volume = {130}, journal = {Eur. Math. Soc. Mag.}, doi = {10.4171/mag/152}, pages = {40 -- 47}, abstract = {In this paper we discuss the notion of research data for the field of mathematics and report on the status quo of research-data management and planning. A number of decentralized approaches are presented and compared to needs and challenges faced in three use cases from different mathematical subdisciplines. We highlight the importance of tailoring research-data management plans to mathematicians' research processes and discuss their usage all along the data life cycle.}, language = {en} } @article{BirkRaharinirinaFackeldeyetal., author = {Birk, Ralph and Raharinirina, N. Alexia and Fackeldey, Konstantin and Richter, Tonio Sebastian and Weber, Marcus}, title = {Inferring cultural and social processes based on patterns of statistical relationships between Synodal texts}, abstract = {In this paper, we explore the relationship patterns between Ancient Egyptian texts of the corpus ``Synodal decrees'', which are originating between 243 and 185 BCE, during the Ptolemaic period. Particularly, we are interested in analyzing the grammatical features of the different texts. Conventional data analysis methods such as correspondence Analysis are very useful to explore the patterns of statistical interdependence between categories of variables. However, it is based on a PCA-like dimension-reduction method and turned out to be unsuitable for our dataset due to the high dimensionality of our data representations. Additionally, the similarity between pairs of texts and pairs of grammatical features is observed through the distance between their representation, but the degree of association between a particular grammatical feature and a text is not. Here, we applied a qualitative Euclidean embedding method that provides a new Euclidean representation of the categories of variables. This new representation of the categories is constructed in such a way that all the patterns of statistical interdependence, similarity, and association, are seen through the Euclidean distance between them. Nevertheless, the PCA-like dimension-reduction method also performed poorly on our new representation. Therefore, we obtained a two-dimensional visualization using non-linear methods such UMAP or t-SNE. Although these dimension-reduction methods reduced the interpretability of interpoint distances, we were still able to identify important similarity patterns between the Synodal text as well as their association patterns with the grammatical features.}, language = {en} } @article{DonatiWeber, author = {Donati, Luca and Weber, Marcus}, title = {Efficient Estimation of Transition Rates as Functions of pH}, series = {Proceedings in Applied Mathematics \& Mechanics}, volume = {23}, journal = {Proceedings in Applied Mathematics \& Mechanics}, doi = {10.1002/pamm.202300264}, abstract = {Extracting the kinetic properties of a system whose dynamics depend on the pH of the environment with which it exchanges energy and atoms requires sampling the Grand Canonical Ensemble. As an alternative, we present a novel strategy that requires simulating only the most recurrent Canonical Ensembles that compose the Grand Canonical Ensemble. The simulations are used to estimate the Gran Canonical distribution for a specific pH value by reweighting and to construct the transition rate matrix by discretizing the Fokker-Planck equation by Square Root Approximation and robust Perron Cluster Cluster Analysis. As an application, we have studied the tripeptide Ala-Asp-Ala.}, language = {en} } @article{RaySunkaraSchuetteetal.2020, author = {Ray, Sourav and Sunkara, Vikram and Sch{\"u}tte, Christof and Weber, Marcus}, title = {How to calculate pH-dependent binding rates for receptor-ligand systems based on thermodynamic simulations with different binding motifs}, series = {Molecular Simulation}, volume = {46}, journal = {Molecular Simulation}, number = {18}, publisher = {Taylor and Francis}, doi = {10.1080/08927022.2020.1839660}, pages = {1443 -- 1452}, year = {2020}, abstract = {Molecular simulations of ligand-receptor interactions are a computational challenge, especially when their association- ('on'-rate) and dissociation- ('off'-rate) mechanisms are working on vastly differing timescales. One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)-N-phenyl propionamide (NFEPP) in a μ-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab.}, language = {en} } @article{RayFackeldeySteinetal., author = {Ray, Sourav and Fackeldey, Konstantin and Stein, Christoph and Weber, Marcus}, title = {Coarse Grained MD Simulations of Opioid interactions with the µ-opioid receptor and the surrounding lipid membrane}, series = {Biophysica}, volume = {3}, journal = {Biophysica}, number = {2}, doi = {10.3390/biophysica3020017}, pages = {263 -- 275}, abstract = {In our previous studies, a new opioid (NFEPP) was developed to only selectively bind to the 𝜇-opoid receptor (MOR) in inflamed tissue and thus avoid the severe side effects of fentanyl. We know that NFEPP has a reduced binding affinity to MOR in healthy tissue. Inspired by the modelling and simulations performed by Sutcliffe et al., we present our own results of coarse-grained molecular dynamics simulations of fentanyl and NFEPP with regards to their interaction with the 𝜇-opioid receptor embedded within the lipid cell membrane. For technical reasons, we have slightly modified Sutcliffe's parametrisation of opioids. The pH-dependent opioid simulations are of interest because while fentanyl is protonated at the physiological pH, NFEPP is deprotonated due to its lower pKa value than that of fentanyl. Here, we analyse for the first time whether pH changes have an effect on the dynamical behaviour of NFEPP when it is inside the cell membrane. Besides these changes, our analysis shows a possible alternative interaction of NFEPP at pH 7.4 outside the binding region of the MOR. The interaction potential of NFEPP with MOR is also depicted by analysing the provided statistical molecular dynamics simulations with the aid of an eigenvector analysis of a transition rate matrix. In our modelling, we see differences in the XY-diffusion profiles of NFEPP compared with fentanyl in the cell membrane.}, language = {en} } @article{RabbenRayWeber, author = {Rabben, Robert Julian and Ray, Sourav and Weber, Marcus}, title = {ISOKANN: Invariant subspaces of Koopman operators learned by a neural network}, series = {The Journal of Chemical Physics}, volume = {153}, journal = {The Journal of Chemical Physics}, number = {11}, doi = {10.1063/5.0015132}, pages = {114109}, abstract = {The problem of determining the rate of rare events in dynamical systems is quite well-known but still difficult to solve. Recent attempts to overcome this problem exploit the fact that dynamic systems can be represented by a linear operator, such as the Koopman operator. Mathematically, the rare event problem comes down to the difficulty in finding invariant subspaces of these Koopman operators K. In this article, we describe a method to learn basis functions of invariant subspaces using an artificial neural Network.}, language = {en} } @misc{RayThiesSunkaraetal., author = {Ray, Sourav and Thies, Arne and Sunkara, Vikram and Wulkow, Hanna and Celik, {\"O}zg{\"u}r and Yerg{\"o}z, Fatih and Sch{\"u}tte, Christof and Stein, Christoph and Weber, Marcus and Winkelmann, Stefanie}, title = {Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82797}, abstract = {Initiated by mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands in normal versus diseased (inflamed) environments, we previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. Uniquely, this design recognised that GPCRs function differently under pathological versus healthy conditions. We now present a novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels associated with parameters of inflamed tissue (pH, radicals). By means of molecular dynamics simulations, we also assessed qualitative changes of the reaction rates due to additional disulfide bridges inside the GPCR binding pocket and used these rates for stochastic simulations of the corresponding reaction jump process. The modelling results were validated with in vitro experiments measuring calcium currents and G-protein activation. We found markedly reduced G-protein dissociation and calcium channel inhibition induced by NFEPP at normal pH, and enhanced constitutive G-protein activation but lower probability of ligand binding with increasing radical concentrations. These results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account.}, language = {en} } @misc{RaySunkaraSchuetteetal., author = {Ray, Sourav and Sunkara, Vikram and Sch{\"u}tte, Christof and Weber, Marcus}, title = {How to calculate pH-dependent binding rates for receptor-ligand systems based on thermodynamic simulations with different binding motifs}, issn = {1438-0064}, doi = {10.1080/08927022.2020.1839660}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78437}, abstract = {Molecular simulations of ligand-receptor interactions are a computational challenge, especially when their association- (``on''-rate) and dissociation- (``off''-rate) mechanisms are working on vastly differing timescales. In addition, the timescale of the simulations themselves is, in practice, orders of magnitudes smaller than that of the mechanisms; which further adds to the complexity of observing these mechanisms, and of drawing meaningful and significant biological insights from the simulation. One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)- N-phenyl propionamide (NFEPP) in a \$\mu\$-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab, who investigated the influence of pH on the inhibitory constant of fentanyl and NFEPP (Spahn et al. 2017). MD simulations are far more accessible and cost-effective than in vitro and in vivo studies. Especially in the context of the current opioid crisis, MD simulations can aid in unravelling molecular functionality and assist in clinical decision-making; the approaches presented in this paper are a pertinent step forward in this direction.}, language = {en} } @article{DonatiFackeldeyWeber2023, author = {Donati, Luca and Fackeldey, Konstantin and Weber, Marcus}, title = {Augmented ant colony algorithm for virtual drug discovery}, series = {Journal of Mathematical Chemistry}, volume = {62}, journal = {Journal of Mathematical Chemistry}, doi = {10.1007/s10910-023-01549-6}, pages = {367 -- 385}, year = {2023}, abstract = {Docking is a fundamental problem in computational biology and drug discovery that seeks to predict a ligand's binding mode and affinity to a target protein. However, the large search space size and the complexity of the underlying physical interactions make docking a challenging task. Here, we review a docking method, based on the ant colony optimization algorithm, that ranks a set of candidate ligands by solving a minimization problem for each ligand individually. In addition, we propose an augmented version that takes into account all energy functions collectively, allowing only one minimization problem to be solved. The results show that our modification outperforms in accuracy and efficiency.}, language = {en} } @article{SikorskiNiknejadWeberetal., author = {Sikorski, Alexander and Niknejad, Amir and Weber, Marcus and Donati, Luca}, title = {Tensor-SqRA: Modeling the transition rates of interacting molecular systems in terms of potential energies}, series = {Journal of Chemical Physics}, volume = {160}, journal = {Journal of Chemical Physics}, doi = {10.1063/5.0187792}, pages = {104112}, abstract = {Estimating the rate of rare conformational changes in molecular systems is one of the goals of molecular dynamics simulations. In the past few decades, a lot of progress has been done in data-based approaches toward this problem. In contrast, model-based methods, such as the Square Root Approximation (SqRA), directly derive these quantities from the potential energy functions. In this article, we demonstrate how the SqRA formalism naturally blends with the tensor structure obtained by coupling multiple systems, resulting in the tensor-based Square Root Approximation (tSqRA). It enables efficient treatment of high-dimensional systems using the SqRA and provides an algebraic expression of the impact of coupling energies between molecular subsystems. Based on the tSqRA, we also develop the projected rate estimation, a hybrid data-model-based algorithm that efficiently estimates the slowest rates for coupled systems. In addition, we investigate the possibility of integrating low-rank approximations within this framework to maximize the potential of the tSqRA.}, language = {en} } @article{SikorskiRiberaBorrellWeber, author = {Sikorski, Alexander and Ribera Borrell, Enric and Weber, Marcus}, title = {Learning Koopman eigenfunctions of stochastic diffusions with optimal importance sampling and ISOKANN}, series = {Journal of Mathematical Physics}, volume = {65}, journal = {Journal of Mathematical Physics}, doi = {10.1063/5.0140764}, pages = {013502}, abstract = {The dominant eigenfunctions of the Koopman operator characterize the metastabilities and slow-timescale dynamics of stochastic diffusion processes. In the context of molecular dynamics and Markov state modeling, they allow for a description of the location and frequencies of rare transitions, which are hard to obtain by direct simulation alone. In this article, we reformulate the eigenproblem in terms of the ISOKANN framework, an iterative algorithm that learns the eigenfunctions by alternating between short burst simulations and a mixture of machine learning and classical numerics, which naturally leads to a proof of convergence. We furthermore show how the intermediate iterates can be used to reduce the sampling variance by importance sampling and optimal control (enhanced sampling), as well as to select locations for further training (adaptive sampling). We demonstrate the usage of our proposed method in experiments, increasing the approximation accuracy by several orders of magnitude.}, language = {en} } @article{ReidelbachFerrerWeber, author = {Reidelbach, Marco and Ferrer, Eloi and Weber, Marcus}, title = {MaRDMO Plugin}, series = {Proceedings of the Conference on Research Data Infrastructure}, volume = {1}, journal = {Proceedings of the Conference on Research Data Infrastructure}, publisher = {TIB Open Publishing}, issn = {2941-296X}, doi = {10.52825/cordi.v1i.254}, abstract = {MaRDMO, a plugin for the Research Data Management Organiser, was developed in the Mathematical Research Data Initiative to document interdisciplinary workflows using a standardised scheme. Interdisciplinary workflows recorded this way are published directly on the MaRDI portal. In addition, central information is integrated into the MaRDI knowledge graph. Next to the documentation, MaRDMO offers the possibility to retrieve existing interdisciplinary workflows from the MaRDI Knowledge Graph to allow the reproduction of the initial work and to provide scientists with new researchimpulses. Thus, MaRDMO creates a community-driven knowledge loop that could help to overcome the replication crisis.}, language = {en} } @article{DonatiSchuetteWeber, author = {Donati, Luca and Sch{\"u}tte, Christof and Weber, Marcus}, title = {The Kramers turnover in terms of a macro-state projection on phase space}, series = {Molecular Physics}, journal = {Molecular Physics}, number = {Ciccotti Special Issue (by invitation only)}, publisher = {Taylor \& Francis}, doi = {10.1080/00268976.2024.2356748}, pages = {e2356748}, abstract = {We have investigated how Langevin dynamics is affected by the friction coefficient using the novel algorithm ISOKANN, which combines the transfer operator approach with modern machine learning techniques. ISOKANN describes the dynamics in terms of an invariant subspace projection of the Koopman operator defined in the entire state space, avoiding approximations due to dimensionality reduction and discretization. Our results are consistent with the Kramers turnover and show that in the low and moderate friction regimes, metastable macro-states and transition rates are defined in phase space, not only in position space.}, language = {en} } @article{SikorskiRabbenChewleetal., author = {Sikorski, Alexander and Rabben, Robert Julian and Chewle, Surahit and Weber, Marcus}, title = {Capturing the Macroscopic Behaviour of Molecular Dynamics with Membership Functions}, abstract = {Markov processes serve as foundational models in many scientific disciplines, such as molecular dynamics, and their simulation forms a common basis for analysis. While simulations produce useful trajectories, obtaining macroscopic information directly from microstate data presents significant challenges. This paper addresses this gap by introducing the concept of membership functions being the macrostates themselves. We derive equations for the holding times of these macrostates and demonstrate their consistency with the classical definition. Furthermore, we discuss the application of the ISOKANN method for learning these quantities from simulation data. In addition, we present a novel method for extracting transition paths based on the ISOKANN results and demonstrate its efficacy by applying it to simulations of the 𝜇-opioid receptor. With this approach we provide a new perspective on analyzing the macroscopic behaviour of Markov systems.}, language = {en} } @article{ThiesSunkaraRayetal., author = {Thies, Arne and Sunkara, Vikram and Ray, Sourav and Wulkow, Hanna and Celik, M. {\"O}zg{\"u}r and Yerg{\"o}z, Fatih and Sch{\"u}tte, Christof and Stein, Christoph and Weber, Marcus and Winkelmann, Stefanie}, title = {Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, number = {607}, doi = {10.1038/s41598-023-27699-w}, abstract = {We previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. The design process of NFEPP was based on mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands, recognizing that GPCRs function differently under pathological versus healthy conditions. We now present an additional and novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels and their dependence on parameters of inflamed and healthy tissue (pH, radicals). The model is validated against in vitro experimental data for the ligands NFEPP and fentanyl at different pH values and radical concentrations. We observe markedly reduced binding affinity and calcium channel inhibition for NFEPP at normal pH compared to lower pH, in contrast to the effect of fentanyl. For increasing radical concentrations, we find enhanced constitutive G-protein activation but reduced ligand binding affinity. Assessing the different effects, the results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account.}, language = {en} } @article{WeberWeitereAutoren, author = {Weber, Marcus and Weitere Autoren,}, title = {DIN SPEC 2343: {\"U}bertragung von sprachbasierten Daten zwischen K{\"u}nstlichen Intelligenzen - Festlegung von Parametern und Formaten}, series = {Beuth Verlag}, journal = {Beuth Verlag}, editor = {Reichardt, Christine}, abstract = {Dieses Dokument legt Parameter und Formate f{\"u}r die {\"U}bertragung sprachbasierter Daten zwischen verschiedenen KI-{\"O}kosystemen fest.}, language = {de} } @article{SeckerFackeldeyWeberetal., author = {Secker, Christopher and Fackeldey, Konstantin and Weber, Marcus and Ray, Sourav and Gorgulla, Christoph and Sch{\"u}tte, Christof}, title = {Novel multi-objective affinity approach allows to identify pH-specific μ-opioid receptor agonists}, series = {Journal of Cheminformatics}, volume = {15}, journal = {Journal of Cheminformatics}, doi = {10.1186/s13321-023-00746-4}, abstract = {Opioids are essential pharmaceuticals due to their analgesic properties, however, lethal side effects, addiction, and opioid tolerance are extremely challenging. The development of novel molecules targeting the μ-opioid receptor (MOR) in inflamed, but not in healthy tissue, could significantly reduce these unwanted effects. Finding such novel molecules can be achieved by maximizing the binding affinity to the MOR at acidic pH while minimizing it at neutral pH, thus combining two conflicting objectives. Here, this multi-objective optimal affinity approach is presented, together with a virtual drug discovery pipeline for its practical implementation. When applied to finding pH-specific drug candidates, it combines protonation state-dependent structure and ligand preparation with high-throughput virtual screening. We employ this pipeline to characterize a set of MOR agonists identifying a morphine-like opioid derivative with higher predicted binding affinities to the MOR at low pH compared to neutral pH. Our results also confirm existing experimental evidence that NFEPP, a previously described fentanyl derivative with reduced side effects, and recently reported β-fluorofentanyls and -morphines show an increased specificity for the MOR at acidic pH when compared to fentanyl and morphine. We further applied our approach to screen a >50K ligand library identifying novel molecules with pH-specific predicted binding affinities to the MOR. The presented differential docking pipeline can be applied to perform multi-objective affinity optimization to identify safer and more specific drug candidates at large scale.}, language = {en} } @article{RaharinirinaSunkaravonKleistetal., author = {Raharinirina, Nomenjanahary Alexia and Sunkara, Vikram and von Kleist, Max and Fackeldey, Konstantin and Weber, Marcus}, title = {Multi-Input data ASsembly for joint Analysis (MIASA): A framework for the joint analysis of disjoint sets of variables}, series = {PLOS ONE}, volume = {19}, journal = {PLOS ONE}, number = {5}, publisher = {Public Library of Science}, doi = {10.1371/journal.pone.0302425}, pages = {26}, language = {en} } @inproceedings{ReidelbachSchemberaWeber, author = {Reidelbach, Marco and Schembera, Bj{\"o}rn and Weber, Marcus}, title = {Towards a FAIR Documentation of Workflows and Models in Applied Mathematics}, volume = {14749}, edition = {Mathematical Software - ICMS 2024}, publisher = {Springer Nature Switzerland}, address = {Cham}, doi = {10.12752/9640}, pages = {254 -- 262}, abstract = {Modeling-Simulation-Optimization workflows play a fundamental role in applied mathematics. The Mathematical Research Data Initiative, MaRDI, responded to this by developing a FAIR and machine-interpretable template for a comprehensive documentation of such workflows. MaRDMO, a Plugin for the Research Data Management Organiser, enables scientists from diverse fields to document and publish their workflows on the MaRDI Portal seamlessly using the MaRDI template. Central to these workflows are mathematical models. MaRDI addresses them with the MathModDB ontology, offering a structured formal model description. Here, we showcase the interaction between MaRDMO and the MathModDB Knowledge Graph through an algebraic modeling workflow from the Digital Humanities. This demonstration underscores the versatility of both services beyond their original numerical domain.}, language = {en} }