@article{YousefianFrankWeberetal.2025, author = {Yousefian, Maryam and Frank, Anne-Simone and Weber, Marcus and R{\"o}blitz, Susanna}, title = {Efficient construction of Markov state models for stochastic gene regulatory networks by domain decomposition}, volume = {26}, journal = {BMC Bioinformatics}, number = {147}, doi = {10.1186/s12859-025-06174-5}, year = {2025}, abstract = {The dynamics of many gene regulatory networks (GRNs) is characterized by the occurrence of metastable phenotypes and stochastic phenotype switches. The chemical master equation (CME) is the most accurate description to model such stochastic dynamics, whereby the long-time dynamics of the system is encoded in the spectral properties of the CME operator. Markov State Models (MSMs) provide a general framework for analyzing and visualizing stochastic multistability and state transitions based on these spectral properties. Until now, however, this approach is either limited to low-dimensional systems or requires the use of high-performance computing facilities, thus limiting its usability.}, language = {en} } @inproceedings{YousefianDonatiSikorskietal.2026, author = {Yousefian, Maryam and Donati, Luca and Sikorski, Alexander and Weber, Marcus and R{\"o}blitz, Susanna}, title = {Exploring Metastable Dynamics of Gene Regulatory Networks with ISOKANN}, volume = {15959}, booktitle = {Computational Methods in Systems Biology. CMSB 2025}, doi = {10.1007/978-3-032-01436-8_8}, pages = {126 -- 149}, year = {2026}, abstract = {Stochastic dynamical systems like gene regulatory networks (GRNs) often exhibit behavior characterized by metastable sets (representing cellular phenotypes), in which trajectories remain for long times, whereas switches between these sets in the phase space are rare events. One way to capture these rare events is to infer the system's long-term behavior from the spectral characteristics (eigenvalues and eigenvectors) of its Koopman operator. For GRNs, the Koopman operator is based on the chemical master equation (CME), which provides a precise mathematical modeling framework for stochastic GRNs. Since the CME is typically analytically intractable, methods based on discretizing the CME operator have been developed. However, determining the number and location of metastable sets in the phase space as well as the transition rates between them remains computationally challenging, especially for large GRNs with many genes and interactions. A promising alternative method, called ISOKANN (invariant subspaces of Koopman operators with artificial neural networks) has been developed in the context of molecular dynamics. ISOKANN uses a combination of the power iteration and neural networks to learn the basis functions of an invariant subspace of the Koopman operator. In this paper, we extend the application of ISOKANN to the CME operator and apply it to two small GRNs: a genetic toggle switch model and a model for macrophage polarization. Our work opens a new field of application for the ISOKANN algorithm and demonstrates the potential of this algorithm for studying large GRNs.}, language = {en} } @article{BauerGaltungGesericketal.2025, author = {Bauer, Wolfgang and Galtung, Noa and Geserick, Peter and Friedrich, Katharina and Weber, Marcus and Somasundaram, Rajan and Diehl-Wiesenecker, Eva and Kappert, Kai}, title = {Pentraxin-3, MyD88, GLP-1, and PD-L1: Performance assessment and composite algorithmic analysis for sepsis identification}, volume = {91}, journal = {Journal of Infection}, number = {3}, doi = {10.1016/j.jinf.2025.106599}, pages = {106599}, year = {2025}, abstract = {This study examines nine emerging biomarkers as possible indicators for diagnosing sepsis in emergency department patient.}, language = {en} } @article{CoomberChewleSeckeretal.2025, author = {Coomber, Celvic and Chewle, Surahit and Secker, Christopher and Fackeldey, Konstantin and Weber, Marcus and Winkelmann, Stefanie and Sch{\"u}tte, Christof and Sunkara, Vikram}, title = {Investigating Endogenous Opioids Unravels the Mechanisms Behind Opioid-Induced Constipation, a Mathematical Modeling Approach}, volume = {26}, journal = {International Journal of Molecular Sciences}, number = {13}, doi = {10.3390/ijms26136207}, year = {2025}, abstract = {Endogenous opioids, such as Endomorphin-2, are not typically associated with severe constipation, unlike pharmaceutical opioids, which induce opioid-induced constipation (OIC) by activating μ-opioid receptors in the gastrointestinal tract. In this study, we present a mathematical model, which integrates the serotonergic and opioid pathways, simulating the interaction between serotonin and opioid signaling within the enteric nervous system (ENS). The model explores the mechanisms underlying OIC, with a focus on the change in adenylyl cyclase (AC) activity, cAMP accumulation, and the distinct functionalities of Endomorphin-2 compared to commonly used pharmaceutical opioids. We study the effects of Morphine, Fentanyl, and Methadone and contrast them with Endomorphin-2. Our findings reveal that opioids do not perturb the signaling of serotonin, but only the activity of AC, suggesting that serotonin levels have no influence on improving opioid-induced constipation. Furthermore, this study reveals that the primary difference between endogenous and pharmaceutical opioids is their degradation rates. This finding shows that modulating opioid degradation rates significantly improves cAMP recovery. In conclusion, our insights steer towards exploring opioid degrading enzymes, localized to the gut, as a strategy for mitigating OIC.}, language = {en} } @misc{RaharinirinaWeberBirketal.2021, author = {Raharinirina, N. Alexia and Weber, Marcus and Birk, Ralph and Fackeldey, Konstantin and Klasse, Sarah M. and Richter, Tonio Sebastian}, title = {Different Tools and Results for Correspondence Analysis}, doi = {10.12752/8257}, year = {2021}, abstract = {This is a list of codes generated from ancient egyptian texts. The codes are used for a correspondence analysis (CA). Codes and CA software are available from the linked webpage.}, language = {en} } @article{FernandesChaowdharySalehetal.2022, author = {Fernandes, Rita and Chaowdhary, Suvrat and Saleh, Noureldin and Mikula, Natalia and Kanevche, Katerina and Berlepsch, Hans and Hosogi, Naoki and Heberle, Joachim and Weber, Marcus and B{\"o}ttcher, Christoph and Koksch, Beate}, title = {Cyanine Dye Coupling Mediates Self-assembly of a pH Sensitive Peptide into Novel 3D Architectures}, volume = {61}, journal = {Angewandte Chemie}, number = {48}, pages = {e202208647}, year = {2022}, abstract = {A conjugated Cy5 dye-peptide system reveals the formation of two novel and structurally distinct supramolecular assemblies with photo-physical characteristics of H-type dimers or tetramers, respectively. The molecular ultrastructures are triggered by the complementary interplay of mutual chromophore coupling and pH induced changes in the peptide charge pattern.}, language = {en} } @article{SeckerFackeldeyWeberetal.2023, author = {Secker, Christopher and Fackeldey, Konstantin and Weber, Marcus and Ray, Sourav and Gorgulla, Christoph and Sch{\"u}tte, Christof}, title = {Novel multi-objective affinity approach allows to identify pH-specific μ-opioid receptor agonists}, volume = {15}, journal = {Journal of Cheminformatics}, doi = {10.1186/s13321-023-00746-4}, year = {2023}, abstract = {Opioids are essential pharmaceuticals due to their analgesic properties, however, lethal side effects, addiction, and opioid tolerance are extremely challenging. The development of novel molecules targeting the μ-opioid receptor (MOR) in inflamed, but not in healthy tissue, could significantly reduce these unwanted effects. Finding such novel molecules can be achieved by maximizing the binding affinity to the MOR at acidic pH while minimizing it at neutral pH, thus combining two conflicting objectives. Here, this multi-objective optimal affinity approach is presented, together with a virtual drug discovery pipeline for its practical implementation. When applied to finding pH-specific drug candidates, it combines protonation state-dependent structure and ligand preparation with high-throughput virtual screening. We employ this pipeline to characterize a set of MOR agonists identifying a morphine-like opioid derivative with higher predicted binding affinities to the MOR at low pH compared to neutral pH. Our results also confirm existing experimental evidence that NFEPP, a previously described fentanyl derivative with reduced side effects, and recently reported β-fluorofentanyls and -morphines show an increased specificity for the MOR at acidic pH when compared to fentanyl and morphine. We further applied our approach to screen a >50K ligand library identifying novel molecules with pH-specific predicted binding affinities to the MOR. The presented differential docking pipeline can be applied to perform multi-objective affinity optimization to identify safer and more specific drug candidates at large scale.}, language = {en} } @misc{TernesBauerBraueretal.2023, author = {Ternes, Thomas and Bauer, Karl-Heinz and Brauer, Frank and Drewes, J{\"u}rgen and Jewell, Kevin and Joss, Adriano and Oehlmann, J{\"o}rg and Radtke, Michael and Schulte-Oehlmann, Ulrike and Schwartz, Thomas and Seel, Peter and V{\"o}lker, Jeanette and Weber, Lilo and Weber, Marcus}, title = {Handlungsempfehlung zur integrativen Bewertung der weitergehenden Abwasserbehandlung von kommunalen Kl{\"a}ranlagen}, volume = {T1/2023}, journal = {DWA-Themen}, publisher = {DWA}, year = {2023}, abstract = {Der DWA-Themenband beschreibt ein Konzept zur weitergehenden Abwasserbehandlung f{\"u}r die Bewertung von Aufbereitungsverfahren, sowohl in einer Pilotphase zur Auswahl von Verfahrensoptionen als auch f{\"u}r die Bewertung großtechnischer Anlagen. Emissionsseitig basiert das Konzept auf bereits regulatorisch definierten Parametern wie anorganischen Stickstoff-Verbindungen oder Phosphat sowie auf neuen noch nicht in der Abwasserverordnung regulierten Parametern. Die immissionsseitige Betrachtung erfolgt auf Basis der rechtlich durch die Europ{\"a}ische Wasserrahmenrichtlinie und andere Anforderungen bindenden Instrumente. Hierf{\"u}r werden spezifische Vorgehensweisen vorgeschlagen. Anhand zweier ausgew{\"a}hlter Praxisbeispiele wird deutlich, dass es zur Bewertung der Verfahrensoptionen an einem Standort dienlich ist, ausgew{\"a}hlte Reduktionen bzw. Entfernungen von Stoffen, Organismen und Effekten zu bestimmen.}, language = {de} } @article{SikorskiRiberaBorrellWeber2024, author = {Sikorski, Alexander and Ribera Borrell, Enric and Weber, Marcus}, title = {Learning Koopman eigenfunctions of stochastic diffusions with optimal importance sampling and ISOKANN}, volume = {65}, journal = {Journal of Mathematical Physics}, arxiv = {http://arxiv.org/abs/2301.00065}, doi = {10.1063/5.0140764}, pages = {013502}, year = {2024}, abstract = {The dominant eigenfunctions of the Koopman operator characterize the metastabilities and slow-timescale dynamics of stochastic diffusion processes. In the context of molecular dynamics and Markov state modeling, they allow for a description of the location and frequencies of rare transitions, which are hard to obtain by direct simulation alone. In this article, we reformulate the eigenproblem in terms of the ISOKANN framework, an iterative algorithm that learns the eigenfunctions by alternating between short burst simulations and a mixture of machine learning and classical numerics, which naturally leads to a proof of convergence. We furthermore show how the intermediate iterates can be used to reduce the sampling variance by importance sampling and optimal control (enhanced sampling), as well as to select locations for further training (adaptive sampling). We demonstrate the usage of our proposed method in experiments, increasing the approximation accuracy by several orders of magnitude.}, language = {en} } @article{SikorskiWeberSchuette2021, author = {Sikorski, Alexander and Weber, Marcus and Sch{\"u}tte, Christof}, title = {The Augmented Jump Chain}, volume = {4}, journal = {Advanced Theory and Simulations}, number = {4}, publisher = {Wiley-VCH}, arxiv = {http://arxiv.org/abs/2008.04624}, doi = {10.1002/adts.202000274}, year = {2021}, abstract = {Modern methods of simulating molecular systems are based on the mathematical theory of Markov operators with a focus on autonomous equilibrated systems. However, non-autonomous physical systems or non-autonomous simulation processes are becoming more and more important. A representation of non-autonomous Markov jump processes is presented as autonomous Markov chains on space-time. Augmenting the spatial information of the embedded Markov chain by the temporal information of the associated jump times, the so-called augmented jump chain is derived. The augmented jump chain inherits the sparseness of the infinitesimal generator of the original process and therefore provides a useful tool for studying time-dependent dynamics even in high dimensions. Furthermore, possible generalizations and applications to the computation of committor functions and coherent sets in the non-autonomous setting are discussed. After deriving the theoretical foundations, the concepts with a proof-of-concept Galerkin discretization of the transfer operator of the augmented jump chain applied to simple examples are illustrated.}, language = {en} } @article{SechiSikorskiWeber2021, author = {Sechi, Renata and Sikorski, Alexander and Weber, Marcus}, title = {Estimation of the Koopman Generator by Newton's Extrapolation}, volume = {19}, journal = {Multiscale Modeling and Simulation}, number = {2}, publisher = {SIAM}, doi = {10.1137/20M1333006}, pages = {758 -- 774}, year = {2021}, abstract = {This article addresses the problem of estimating the Koopman generator of a Markov process. The direct computation of the infinitesimal generator is not easy because of the discretization of the state space, in particular because of the trade-off inherent in the choice of the best lag time to study the process. Short lag times implies a strong discretization of the state space and a consequent loss of Markovianity. Large lag times bypass events on fast timescales. We propose a method to approximate the generator with the computation of the Newton polynomial extrapolation. This technique is a multistep approach which uses as its input Koopman transfer operators evaluated for a series of lag times. Thus, the estimated infinitesimal generator combines information from different time resolutions and does not bias only fast- or slow-decaying dynamics. We show that the multi-scale Newton method can improve the estimation of the generator in comparison to the computation using finite difference or matrix logarithm methods.}, language = {en} } @article{DonatiWeber2022, author = {Donati, Luca and Weber, Marcus}, title = {Assessing transition rates as functions of environmental variables}, volume = {157}, journal = {The Journal of Chemical Physics}, number = {22}, publisher = {AIP Publishing}, doi = {10.1063/5.0109555}, pages = {224103-1 -- 224103-14}, year = {2022}, abstract = {We present a method to estimate the transition rates of molecular systems under different environmental conditions which cause the formation or the breaking of bonds and require the sampling of the Grand Canonical Ensemble. For this purpose, we model the molecular system in terms of probable "scenarios", governed by different potential energy functions, which are separately sampled by classical MD simulations. Reweighting the canonical distribution of each scenario according to specific environmental variables, we estimate the grand canonical distribution, then we use the Square Root Approximation (SqRA) method to discretize the Fokker-Planck operator into a rate matrix and the robust Perron Cluster Cluster Analysis (PCCA+) method to coarse-grain the kinetic model. This permits to efficiently estimate the transition rates of conformational states as functions of environmental variables, for example, the local pH at a cell membrane. In this work we formalize the theoretical framework of the procedure and we present a numerical experiment comparing the results with those provided by a constant-pH method based on non-equilibrium Molecular Dynamics Monte Carlo simulations. The method is relevant for the development of new drug design strategies which take into account how the cellular environment influences biochemical processes.}, language = {en} } @article{SechiFackeldeyChewleetal.2022, author = {Sechi, Renata and Fackeldey, Konstantin and Chewle, Surahit and Weber, Marcus}, title = {SepFree NMF: A Toolbox for Analyzing the Kinetics of Sequential Spectroscopic Data}, volume = {15}, journal = {Algorithms}, number = {9}, doi = {10.3390/a15090297}, pages = {297}, year = {2022}, abstract = {This work addresses the problem of determining the number of components from sequential spectroscopic data analyzed by non-negative matrix factorization without separability assumption (SepFree NMF). These data are stored in a matrix M of dimension "measured times" versus "measured wavenumbers" and can be decomposed to obtain the spectral fingerprints of the states and their evolution over time. SepFree NMF assumes a memoryless (Markovian) process to underline the dynamics and decomposes M so that M=WH, with W representing the components' fingerprints and H their kinetics. However, the rank of this decomposition (i.e., the number of physical states in the process) has to be guessed from pre-existing knowledge on the observed process. We propose a measure for determining the number of components with the computation of the minimal memory effect resulting from the decomposition; by quantifying how much the obtained factorization is deviating from the Markovian property, we are able to score factorizations of a different number of components. In this way, we estimate the number of different entities which contribute to the observed system, and we can extract kinetic information without knowing the characteristic spectra of the single components. This manuscript provides the mathematical background as well as an analysis of computer generated and experimental sequentially measured Raman spectra.}, language = {en} } @article{DonatiWeberKeller2022, author = {Donati, Luca and Weber, Marcus and Keller, Bettina G.}, title = {A review of Girsanov Reweighting and of Square Root Approximation for building molecular Markov State Models}, volume = {63}, journal = {Journal of Mathematical Physics}, number = {12}, publisher = {AIP Publishing}, doi = {10.1063/5.0127227}, pages = {123306-1 -- 123306-21}, year = {2022}, abstract = {Dynamical reweighting methods permit to estimate kinetic observables of a stochastic process governed by a target potential U(x) from trajectories that have been generated at a different potential V(x). In this article, we present Girsanov reweighting and Square Root Approximation (SqRA): the first method reweights path probabilities exploiting the Girsanov theorem and can be applied to Markov State Models (MSMs) to reweight transition probabilities; the second method was originally developed to discretize the Fokker-Planck operator into a transition rate matrix, but here we implement it into a reweighting scheme for transition rates. We begin by reviewing the theoretical background of the methods, then present two applications relevant to Molecular Dynamics (MD), highlighting their strengths and weaknesses.}, language = {en} } @article{RayFackeldeySteinetal.2023, author = {Ray, Sourav and Fackeldey, Konstantin and Stein, Christoph and Weber, Marcus}, title = {Coarse Grained MD Simulations of Opioid interactions with the µ-opioid receptor and the surrounding lipid membrane}, volume = {3}, journal = {Biophysica}, number = {2}, doi = {10.3390/biophysica3020017}, pages = {263 -- 275}, year = {2023}, abstract = {In our previous studies, a new opioid (NFEPP) was developed to only selectively bind to the 𝜇-opoid receptor (MOR) in inflamed tissue and thus avoid the severe side effects of fentanyl. We know that NFEPP has a reduced binding affinity to MOR in healthy tissue. Inspired by the modelling and simulations performed by Sutcliffe et al., we present our own results of coarse-grained molecular dynamics simulations of fentanyl and NFEPP with regards to their interaction with the 𝜇-opioid receptor embedded within the lipid cell membrane. For technical reasons, we have slightly modified Sutcliffe's parametrisation of opioids. The pH-dependent opioid simulations are of interest because while fentanyl is protonated at the physiological pH, NFEPP is deprotonated due to its lower pKa value than that of fentanyl. Here, we analyse for the first time whether pH changes have an effect on the dynamical behaviour of NFEPP when it is inside the cell membrane. Besides these changes, our analysis shows a possible alternative interaction of NFEPP at pH 7.4 outside the binding region of the MOR. The interaction potential of NFEPP with MOR is also depicted by analysing the provided statistical molecular dynamics simulations with the aid of an eigenvector analysis of a transition rate matrix. In our modelling, we see differences in the XY-diffusion profiles of NFEPP compared with fentanyl in the cell membrane.}, language = {en} } @article{RaharinirinaFackeldeyWeber2022, author = {Raharinirina, N. Alexia and Fackeldey, Konstantin and Weber, Marcus}, title = {Qualitative Euclidean embedding of Disjoint Sets of Points}, year = {2022}, abstract = {We consider two disjoint sets of points with a distance metric, or a proximity function, associated with each set. If each set can be separately embedded into separate Euclidean spaces, then we provide sufficient conditions for the two sets to be jointly embedded in one Euclidean space. In this joint Euclidean embedding, the distances between the points are generated by a specific relation-preserving function. Consequently, the mutual distances between two points of the same set are specific qualitative transformations of their mutual distances in their original space; the pairwise distances between the points of different sets can be constructed from an arbitrary proximity function (might require scaling).}, language = {en} } @article{BoegeFritzeGoergenetal.2023, author = {Boege, Tobias and Fritze, Ren{\´e} and G{\"o}rgen, Christiane and Hanselmann, Jeroen and Iglezakis, Dorothea and Kastner, Lars and Koprucki, Thomas and Krause, Tabea and Lehrenfeld, Christoph and Polla, Silvia and Reidelbach, Marco and Riedel, Christian and Saak, Jens and Schembera, Bj{\"o}rn and Tabelow, Karsten and Weber, Marcus}, title = {Research-Data Management Planning in the German Mathematical Community}, volume = {130}, journal = {Eur. Math. Soc. Mag.}, doi = {10.4171/mag/152}, pages = {40 -- 47}, year = {2023}, abstract = {In this paper we discuss the notion of research data for the field of mathematics and report on the status quo of research-data management and planning. A number of decentralized approaches are presented and compared to needs and challenges faced in three use cases from different mathematical subdisciplines. We highlight the importance of tailoring research-data management plans to mathematicians' research processes and discuss their usage all along the data life cycle.}, language = {en} } @misc{ReidelbachWeber2022, author = {Reidelbach, Marco and Weber, Marcus}, title = {MaRDI - The mathematical Research Data Initiative}, journal = {Aktionstag Forschungsdaten}, doi = {10.5281/zenodo.7397588}, year = {2022}, language = {en} } @article{SikorskiNiknejadWeberetal.2024, author = {Sikorski, Alexander and Niknejad, Amir and Weber, Marcus and Donati, Luca}, title = {Tensor-SqRA: Modeling the transition rates of interacting molecular systems in terms of potential energies}, volume = {160}, journal = {Journal of Chemical Physics}, arxiv = {http://arxiv.org/abs/2311.09779}, doi = {10.1063/5.0187792}, pages = {104112}, year = {2024}, abstract = {Estimating the rate of rare conformational changes in molecular systems is one of the goals of molecular dynamics simulations. In the past few decades, a lot of progress has been done in data-based approaches toward this problem. In contrast, model-based methods, such as the Square Root Approximation (SqRA), directly derive these quantities from the potential energy functions. In this article, we demonstrate how the SqRA formalism naturally blends with the tensor structure obtained by coupling multiple systems, resulting in the tensor-based Square Root Approximation (tSqRA). It enables efficient treatment of high-dimensional systems using the SqRA and provides an algebraic expression of the impact of coupling energies between molecular subsystems. Based on the tSqRA, we also develop the projected rate estimation, a hybrid data-model-based algorithm that efficiently estimates the slowest rates for coupled systems. In addition, we investigate the possibility of integrating low-rank approximations within this framework to maximize the potential of the tSqRA.}, language = {en} } @inproceedings{SikorskiRabbenChewleetal.2025, author = {Sikorski, Alexander and Rabben, Robert Julian and Chewle, Surahit and Weber, Marcus}, title = {Capturing the Macroscopic Behaviour of Molecular Dynamics with Membership Functions}, booktitle = {Mathematical Optimization for Machine Learning: Proceedings of the MATH+ Thematic Einstein Semester 2023}, editor = {Fackeldey, K.}, publisher = {De Gruyter}, arxiv = {http://arxiv.org/abs/2404.10523}, doi = {10.1515/9783111376776-004}, pages = {41 -- 58}, year = {2025}, abstract = {Markov processes serve as foundational models in many scientific disciplines, such as molecular dynamics, and their simulation forms a common basis for analysis. While simulations produce useful trajectories, obtaining macroscopic information directly from microstate data presents significant challenges. This paper addresses this gap by introducing the concept of membership functions being the macrostates themselves. We derive equations for the holding times of these macrostates and demonstrate their consistency with the classical definition. Furthermore, we discuss the application of the ISOKANN method for learning these quantities from simulation data. In addition, we present a novel method for extracting transition paths based on the ISOKANN results and demonstrate its efficacy by applying it to simulations of the 𝜇-opioid receptor. With this approach we provide a new perspective on analyzing the macroscopic behaviour of Markov systems.}, language = {en} }