@misc{Weber2009, author = {Weber, Marcus}, title = {A Subspace Approach to Molecular Markov State Models via an Infinitesimal Generator}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11432}, number = {09-27}, year = {2009}, abstract = {Supercomputers can simulate complex molecular systems. However, there is a very large gap between the fastest oscillations of covalent bonds of a molecule and the time-scale of the dominant processes. In order to extract the dominant time-scales and to identify the dominant processes, a clustering of information is needed. This thesis shows that only the subspace-based Robust Perron Cluster Analysis (PCCA+) can solve this problem correctly by the construction of a Markov State Model. PCCA+ allows for time-extrapolation in molecular kinetics. This thesis shows the difference between molecular dynamics and molecular kinetics. Only in the molecular kinetics framework a definition of transition rates is possible. In this context, the existence of an infinitesimal generator of the dynamical processes is discussed. If the existence is assumed, the Theorem of Gauß can be applied in order to compute transition rates efficiently. Molecular dynamics, however, is not able to provide a suitable statistical basis for the determination of the transition pattern.}, language = {en} } @misc{Weber2008, author = {Weber, Marcus}, title = {An efficient analysis of rare events in canonical ensemble dynamics}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10871}, number = {08-36}, year = {2008}, abstract = {For an analysis of a molecular system from a computational statistical thermodynamics point of view, extensive molecular dynamics simulations are very inefficient. During this procedure, at lot of redundant data is generated. Whereas the algorithms spend most of the computing time for a sampling of configurations within the basins of the potential energy landscape of the molecular system, the important information about the long-time behaviour of the molecules is given by transition regions and barriers between the basins, which are sampled rarely only. Thinking of molecular dynamics trajectories, researchers try to figure out which kind of dynamical model is suitable for an efficient simulation. This article suggests to change the point of view from extensive simulation of molecular dynamics trajectories to more efficient sampling strategies of the conformation dynamics approach.}, language = {en} } @misc{FackeldeyRoeblitzScharkoietal.2011, author = {Fackeldey, Konstantin and R{\"o}blitz, Susanna and Scharkoi, Olga and Weber, Marcus}, title = {Soft Versus Hard Metastable Conformations in Molecular Simulations}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13189}, number = {11-27}, year = {2011}, abstract = {Particle methods have become indispensible in conformation dynamics to compute transition rates in protein folding, binding processes and molecular design, to mention a few. Conformation dynamics requires at a decomposition of a molecule's position space into metastable conformations. In this paper, we show how this decomposition can be obtained via the design of either ``soft'' or ``hard'' molecular conformations. We show, that the soft approach results in a larger metastabilitiy of the decomposition and is thus more advantegous. This is illustrated by a simulation of Alanine Dipeptide.}, language = {en} } @phdthesis{Weber2011, author = {Weber, Marcus}, title = {A Subspace Approach to Molecular Markov State Models via a New Infinitesimal Generator}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14025}, school = {Zuse Institute Berlin (ZIB)}, year = {2011}, abstract = {Supercomputers can simulate complex molecular systems. However, there is a very large gap between the fastest oscillations of covalent bonds of a molecule and the time-scale of the dominant processes. In order to extract the dominant time-scales and to identify the dominant processes, a clustering of information is needed. This thesis shows that only the subspace-based Robust Perron Cluster Analysis (PCCA+) can solve this problem correctly by the construction of a Markov State Model. PCCA+ allows for time-extrapolation in molecular kinetics. This thesis shows the difference between molecular dynamics and molecular kinetics. Only in the molecular kinetics framework a definition of transition rates is possible. In this context, the existence of an infinitesimal generator of the dynamical processes is discussed. If the existence is assumed, the Theorem of Gauß can be applied in order to compute transition rates efficiently. Molecular dynamics, however, is not able to provide a suitable statistical basis for the determination of the transition pattern.}, language = {en} } @misc{Weber2012, author = {Weber, Marcus}, title = {The funnel trap paradox}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14765}, number = {12-12}, year = {2012}, abstract = {In this article, an illustrative example is given for the coarse-graining of a Markov process which leads to a shift in the statistical weights of a two-states-system. The example is based on a 2D-funnel trap. The funnel trap is constructed in such a way, that the area inside and outside of the trap is identical. However, observing the flight of the insect as a Markov process, the probability for being "in the trap" is higher. This example can be transferred to several kinds of processes (like receptor-ligandbinding processes in chemistry) and describes the influence of "re-entering events".}, language = {en} } @misc{WeberWalterKubeetal.2006, author = {Weber, Marcus and Walter, Lionel and Kube, Susanna and Deuflhard, Peter}, title = {Stable computation of probability densities for metastable dynamical systems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9331}, number = {06-39}, year = {2006}, abstract = {Whenever the invariant stationary density of metastable dynamical systems decomposes into almost invariant partial densities, its computation as eigenvector of some transition probability matrix is an ill-conditioned problem. In order to avoid this computational difficulty, we suggest to apply an aggregation/disaggregation method which only addresses wellconditioned sub-problems and thus results in a stable algorithm. In contrast to existing methods, the aggregation step is done via a sampling algorithm which covers only small patches of the sampling space. Finally, the theoretical analysis is illustrated by two biomolecular examples.}, language = {en} } @misc{Weber2003, author = {Weber, Marcus}, title = {Clustering by using a simplex structure}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7782}, number = {04-03}, year = {2003}, abstract = {In this paper we interpret clustering as a mapping of data into a simplex. If the data itself has simplicial struture this mapping becomes linear. Spectral analysis is an often used tool for clustering data. We will show that corresponding singular vectors or eigenvectors comprise simplicial structure. Therefore they lead to a cluster algorithm, which consists of a simple linear mapping. An example for this kind of algorithms is the Perron cluster analysis (PCCA). We have applied it in practice to identify metastable sets of molecular dynamical systems. In contrast to other algorithms, this kind of approach provides an a priori criterion to determine the number of clusters. In this paper we extend the ideas to more general problems like clustering of bipartite graphs.}, language = {en} } @misc{WeberRungsarityotinSchliep2004, author = {Weber, Marcus and Rungsarityotin, Wasinee and Schliep, Alexander}, title = {Perron Cluster Analysis and Its Connection to Graph Partitioning for Noisy Data}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8140}, number = {04-39}, year = {2004}, abstract = {The problem of clustering data can be formulated as a graph partitioning problem. Spectral methods for obtaining optimal solutions have reveceived a lot of attention recently. We describe Perron Cluster Cluster Analysis (PCCA) and, for the first time, establish a connection to spectral graph partitioning. We show that in our approach a clustering can be efficiently computed using a simple linear map of the eigenvector data. To deal with the prevalent problem of noisy and possibly overlapping data we introduce the min Chi indicator which helps in selecting the number of clusters and confirming the existence of a partition of the data. This gives a non-probabilistic alternative to statistical mixture-models. We close with showing favorable results on the analysis of gene expressi on data for two different cancer types.}, language = {en} } @misc{WeberKubeRiemeretal.2006, author = {Weber, Marcus and Kube, Susanna and Riemer, Alexander and Bujotzek, Alexander}, title = {Efficient Sampling of the Stationary Distribution of Metastable Dynamical Systems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9467}, number = {07-03}, year = {2006}, abstract = {In this article we aim at an efficient sampling of the stationary distribution of dynamical systems in the presence of metastabilities. In the past decade many sophisticated algorithms have been inven ted in this field. We do not want to simply add a further one. We address the problem that one has applied a sampling algorithm for a dynamical system many times. This leads to different samplings which more or less represent the stationary distribution partially very well, but which are still far away from ergodicity or from the global stationary distribution. We will show how these samplings can be joined together in order to get one global sampling of the stationary distribution.}, language = {en} } @misc{KubeWeber2005, author = {Kube, Susanna and Weber, Marcus}, title = {Identification of Metastabilities in Monomolecular Conformation Kinetics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8956}, number = {06-01}, year = {2005}, abstract = {The identification of metastable conformations of molecules plays an important role in computational drug design. One main difficulty is the fact that the underlying dynamic processes take place in high dimensional spaces. Although the restriction of degrees of freedom to a few dihedral angles significantly reduces the complexity of the problem, the existing algorithms are time-consuming. They are based on the approximation of transition probabilities by an extensive sampling of states according to the Boltzmann distribution. We present a method which can identify metastable conformations without sampling the complete distribution. Our algorithm is based on local transition rates and uses only pointwise information about the potential energy surface. In order to apply the cluster algorithm PCCA+, we compute a few eigenvectors of the rate matrix by the Jacobi-Davidson method. Interpolation techniques are applied to approximate the thermodynamical weights of the clusters. The concluding example illustrates our approach for epigallocatechine, a molecule which can be described by seven dihedral angles.}, language = {en} } @misc{WalterWeber2006, author = {Walter, Lionel and Weber, Marcus}, title = {ConfJump : a fast biomolecular sampling method which drills tunnels through high mountains}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9204}, number = {06-26}, year = {2006}, abstract = {In order to compute the thermodynamic weights of the different metastable conformations of a molecule, we want to approximate the molecule's Boltzmann distribution in a reasonable time. This is an essential issue in computational drug design. The energy landscape of active biomolecules is generally very rough with a lot of high barriers and low regions. Many of the algorithms that perform such samplings (e.g. the hybrid Monte Carlo method) have difficulties with such landscapes. They are trapped in low-energy regions for a very long time and cannot overcome high barriers. Moving from one low-energy region to another is a very rare event. For these reasons, the distribution of the generated sampling points converges very slowly against the thermodynamically correct distribution of the molecule. The idea of ConfJump is to use \$a~priori\$ knowledge of the localization of low-energy regions to enhance the sampling with artificial jumps between these low-energy regions. The artificial jumps are combined with the hybrid Monte Carlo method. This allows the computation of some dynamical properties of the molecule. In ConfJump, the detailed balance condition is satisfied and the mathematically correct molecular distribution is sampled.}, language = {en} } @phdthesis{Weber2006, author = {Weber, Marcus}, title = {Meshless Methods in Confirmation Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10232}, year = {2006}, language = {en} } @misc{WeberBeckerKoeppenetal.2007, author = {Weber, Marcus and Becker, Roland and K{\"o}ppen, Robert and Durmaz, Vedat}, title = {Classical hybrid Monte-Carlo simulations of the interconversion of hexabromocyclododecane}, organization = {Zuse-Institut Berlin}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10308}, number = {07-31}, year = {2007}, abstract = {In this paper, we investigate the interconversion processes of the major flame retardant -- 1,2,5,6,9,10-hexabromocyclododecane (HBCD) -- by the means of statistical thermodynamics based on classical force-fields. Three ideas will be presented. First, the application of classical hybrid Monte-Carlo simulations for quantum mechanical processes will be justified. Second, the problem of insufficient convergence properties of hybrid Monte-Carlo methods for the generation of low temperature canonical ensembles will be solved by an interpolation approach. Furthermore, it will be shown how free energy differences can be used for a rate matrix computation. The results of our numerical simulations will be compared to experimental results.}, language = {en} } @misc{TungaWeber2012, author = {Tunga, Burcu and Weber, Marcus}, title = {Free Energy Calculation Using Mayer Cluster Expansion and Fluctuation Free Integration}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16031}, year = {2012}, abstract = {This work aims to develop a new algorithm to calculate the free energy of water molecules by using a deterministic way. For this purpose, we assume a closed system confined to a physical volume, having water molecules in gas phase. To calculate the free energy of this sytem we utilized Mayer cluster expansion and the fluctuation free integration method.}, language = {en} } @misc{WeberFackeldey2013, author = {Weber, Marcus and Fackeldey, Konstantin}, title = {Computing the Minimal Rebinding Effect Included in a Given Kinetics}, issn = {1438-0064}, doi = {10.1137/13091124X}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17796}, year = {2013}, abstract = {The rebinding effect is a phenomenon which occurs when observing a ligand-receptor binding process. On the macro scale this process comprises the Markov property. This Makovian view is spoiled when switching to the atomistic scale of a binding process. We therefore suggest a model which accurately describes the rebinding effect on the atomistic scale by allowing ''intermediate'' bound states. This allows us to define an indicator for the magnitude of rebinding and to formulate an optimization problem. The results form our examples show good agreement with data form laboratory.}, language = {en} } @misc{LieFackeldeyWeber2013, author = {Lie, Han Cheng and Fackeldey, Konstantin and Weber, Marcus}, title = {A square root approximation of transition rates for a Markov State Model}, issn = {1438-0064}, doi = {10.1137/120899959}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42195}, year = {2013}, abstract = {Trajectory- or mesh-based methods for analyzing the dynamical behavior of large molecules tend to be impractical due to the curse of dimensionality - their computational cost increases exponentially with the size of the molecule. We propose a method to break the curse by a novel square root approximation of transition rates, Monte Carlo quadrature and a discretization approach based on solving linear programs. With randomly sampled points on the molecular energy landscape and randomly generated discretizations of the molecular configuration space as our initial data, we construct a matrix describing the transition rates between adjacent discretization regions. This transition rate matrix yields a Markov State Model of the molecular dynamics. We use Perron cluster analysis and coarse-graining techniques in order to identify metastable sets in configuration space and approximate the transition rates between the metastable sets. Application of our method to a simple energy landscape on a two-dimensional configuration space provides proof of concept and an example for which we compare the performance of different discretizations. We show that the computational cost of our method grows only polynomially with the size of the molecule. However, finding discretizations of higher-dimensional configuration spaces in which metastable sets can be identified remains a challenge.}, language = {en} } @misc{NielsenFackeldeyWeber2013, author = {Nielsen, Adam and Fackeldey, Konstantin and Weber, Marcus}, title = {On a Generalized Transfer Operator}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43162}, year = {2013}, abstract = {We introduce a generalized operator for arbitrary stochastic processes by using a pre-kernel, which is a generalization of the Markov kernel. For deterministic processes, such an operator is already known as the Frobenius-Perron operator, which is defined for a large class of measures. For Markov processes, there exists transfer operators being only well defined for stationary measures in \$L^2\$. Our novel generalized transfer operator is well defined for arbitrary stochastic processes, in particular also for deterministic ones. We can show that this operator is acting on \$L^1\$. For stationary measures, this operator is also an endomorphism of \$L^2\$ and, therefore, allows for a mathematical analysis in Hilbert spaces.}, language = {en} } @article{FackeldeyKoltaiNeviretal.2019, author = {Fackeldey, Konstantin and Koltai, Peter and Nevir, Peter and Rust, Henning and Schild, Axel and Weber, Marcus}, title = {From metastable to coherent sets - Time-discretization schemes}, volume = {29}, journal = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, doi = {10.1063/1.5058128}, pages = {012101 -- 012101}, year = {2019}, abstract = {In this article, we show that these well-established spectral algorithms (like PCCA+, Perron Cluster Cluster Analysis) also identify coherent sets of non-autonomous dynamical systems. For the identification of coherent sets, one has to compute a discretization (a matrix T) of the transfer operator of the process using a space-time-discretization scheme. The article gives an overview about different time-discretization schemes and shows their applicability in two different fields of application.}, language = {en} } @article{AbbasSchneiderBollmannetal.2019, author = {Abbas, Aennes and Schneider, Ilona and Bollmann, Anna and Funke, Jan and Oehlmann, J{\"o}rg and Prasse, Carsten and Schulte-Oehlmann, Ulrike and Seitz, Wolfram and Ternes, Thomas and Weber, Marcus and Wesely, Henning and Wagner, Martin}, title = {What you extract is what you see: Optimising the preparation of water and wastewater samples for in vitro bioassays}, volume = {152}, journal = {Water Research}, doi = {10.1016/j.watres.2018.12.049}, pages = {47 -- 60}, year = {2019}, abstract = {The assessment of water quality is crucial for safeguarding drinking water resources and ecosystem integrity. To this end, sample preparation and extraction is critically important, especially when investigating emerging contaminants and the toxicity of water samples. As extraction methods are rarely optimised for bioassays but rather adopted from chemical analysis, this may result in a misrepresentation of the actual toxicity. In this study, surface water, groundwater, hospital and municipal wastewater were used to characterise the impacts of common sample preparation techniques (acidification, filtration and solid phase extraction (SPE)) on the outcomes of eleven in vitro bioassays. The latter covered endocrine activity (reporter gene assays for estrogen, androgen, aryl-hydrocarbon, retinoic acid, retinoid X, vitamin D, thyroid receptor), mutagenicity (Ames fluctuation test), genotoxicity (umu test) and cytotoxicity. Water samples extracted using different SPE sorbents (Oasis HLB, Supelco ENVI-Carb+, Telos C18/ENV) at acidic and neutral pH were compared for their performance in recovering biological effects. Acidification, commonly used for stabilisation, significantly altered the endocrine activity and toxicity of most (waste)water samples. Sample filtration did not affect the majority of endpoints but in certain cases affected the (anti-)estrogenic and dioxin-like activities. SPE extracts (10.4 × final concentration), including WWTP effluents, induced significant endocrine effects that were not detected in aqueous samples (0.63 × final concentration), such as estrogenic, (anti-)androgenic and dioxin-like activities. When ranking the SPE methods using multivariate Pareto optimisation an extraction with Telos C18/ENV at pH 7 was most effective in recovering toxicity. At the same time, these extracts were highly cytotoxic masking the endpoint under investigation. Compared to that, extraction at pH 2.5 enriched less cytotoxicity. In summary, our study demonstrates that sample preparation and extraction critically affect the outcome of bioassays when assessing the toxicity of water samples. Depending on the water matrix and the bioassay, these methods need to be optimised to accurately assess water quality.}, language = {en} } @article{ReuterFackeldeyWeber2019, author = {Reuter, Bernhard and Fackeldey, Konstantin and Weber, Marcus}, title = {Generalized Markov modeling of nonreversible molecular kinetics}, volume = {17}, journal = {The Journal of Chemical Physics}, number = {150}, doi = {10.1063/1.5064530}, pages = {174103}, year = {2019}, abstract = {Markov state models are to date the gold standard for modeling molecular kinetics since they enable the identification and analysis of metastable states and related kinetics in a very instructive manner. The state-of-the-art Markov state modeling methods and tools are very well developed for the modeling of reversible processes in closed equilibrium systems. On the contrary, they are largely not well suited to deal with nonreversible or even nonautonomous processes of nonequilibrium systems. Thus, we generalized the common Robust Perron Cluster Cluster Analysis (PCCA+) method to enable straightforward modeling of nonequilibrium systems as well. The resulting Generalized PCCA (G-PCCA) method readily handles equilibrium as well as nonequilibrium data by utilizing real Schur vectors instead of eigenvectors. This is implemented in the G-PCCA algorithm that enables the semiautomatic coarse graining of molecular kinetics. G-PCCA is not limited to the detection of metastable states but also enables the identification and modeling of cyclic processes. This is demonstrated by three typical examples of nonreversible systems.}, language = {en} }