@misc{Weber2009, author = {Weber, Marcus}, title = {A Subspace Approach to Molecular Markov State Models via an Infinitesimal Generator}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11432}, number = {09-27}, year = {2009}, abstract = {Supercomputers can simulate complex molecular systems. However, there is a very large gap between the fastest oscillations of covalent bonds of a molecule and the time-scale of the dominant processes. In order to extract the dominant time-scales and to identify the dominant processes, a clustering of information is needed. This thesis shows that only the subspace-based Robust Perron Cluster Analysis (PCCA+) can solve this problem correctly by the construction of a Markov State Model. PCCA+ allows for time-extrapolation in molecular kinetics. This thesis shows the difference between molecular dynamics and molecular kinetics. Only in the molecular kinetics framework a definition of transition rates is possible. In this context, the existence of an infinitesimal generator of the dynamical processes is discussed. If the existence is assumed, the Theorem of Gauß can be applied in order to compute transition rates efficiently. Molecular dynamics, however, is not able to provide a suitable statistical basis for the determination of the transition pattern.}, language = {en} } @misc{Weber2008, author = {Weber, Marcus}, title = {An efficient analysis of rare events in canonical ensemble dynamics}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10871}, number = {08-36}, year = {2008}, abstract = {For an analysis of a molecular system from a computational statistical thermodynamics point of view, extensive molecular dynamics simulations are very inefficient. During this procedure, at lot of redundant data is generated. Whereas the algorithms spend most of the computing time for a sampling of configurations within the basins of the potential energy landscape of the molecular system, the important information about the long-time behaviour of the molecules is given by transition regions and barriers between the basins, which are sampled rarely only. Thinking of molecular dynamics trajectories, researchers try to figure out which kind of dynamical model is suitable for an efficient simulation. This article suggests to change the point of view from extensive simulation of molecular dynamics trajectories to more efficient sampling strategies of the conformation dynamics approach.}, language = {en} } @misc{FackeldeyRoeblitzScharkoietal.2011, author = {Fackeldey, Konstantin and R{\"o}blitz, Susanna and Scharkoi, Olga and Weber, Marcus}, title = {Soft Versus Hard Metastable Conformations in Molecular Simulations}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13189}, number = {11-27}, year = {2011}, abstract = {Particle methods have become indispensible in conformation dynamics to compute transition rates in protein folding, binding processes and molecular design, to mention a few. Conformation dynamics requires at a decomposition of a molecule's position space into metastable conformations. In this paper, we show how this decomposition can be obtained via the design of either ``soft'' or ``hard'' molecular conformations. We show, that the soft approach results in a larger metastabilitiy of the decomposition and is thus more advantegous. This is illustrated by a simulation of Alanine Dipeptide.}, language = {en} } @phdthesis{Weber2011, author = {Weber, Marcus}, title = {A Subspace Approach to Molecular Markov State Models via a New Infinitesimal Generator}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14025}, school = {Zuse Institute Berlin (ZIB)}, year = {2011}, abstract = {Supercomputers can simulate complex molecular systems. However, there is a very large gap between the fastest oscillations of covalent bonds of a molecule and the time-scale of the dominant processes. In order to extract the dominant time-scales and to identify the dominant processes, a clustering of information is needed. This thesis shows that only the subspace-based Robust Perron Cluster Analysis (PCCA+) can solve this problem correctly by the construction of a Markov State Model. PCCA+ allows for time-extrapolation in molecular kinetics. This thesis shows the difference between molecular dynamics and molecular kinetics. Only in the molecular kinetics framework a definition of transition rates is possible. In this context, the existence of an infinitesimal generator of the dynamical processes is discussed. If the existence is assumed, the Theorem of Gauß can be applied in order to compute transition rates efficiently. Molecular dynamics, however, is not able to provide a suitable statistical basis for the determination of the transition pattern.}, language = {en} } @misc{Weber2012, author = {Weber, Marcus}, title = {The funnel trap paradox}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14765}, number = {12-12}, year = {2012}, abstract = {In this article, an illustrative example is given for the coarse-graining of a Markov process which leads to a shift in the statistical weights of a two-states-system. The example is based on a 2D-funnel trap. The funnel trap is constructed in such a way, that the area inside and outside of the trap is identical. However, observing the flight of the insect as a Markov process, the probability for being "in the trap" is higher. This example can be transferred to several kinds of processes (like receptor-ligandbinding processes in chemistry) and describes the influence of "re-entering events".}, language = {en} } @misc{WeberWalterKubeetal.2006, author = {Weber, Marcus and Walter, Lionel and Kube, Susanna and Deuflhard, Peter}, title = {Stable computation of probability densities for metastable dynamical systems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9331}, number = {06-39}, year = {2006}, abstract = {Whenever the invariant stationary density of metastable dynamical systems decomposes into almost invariant partial densities, its computation as eigenvector of some transition probability matrix is an ill-conditioned problem. In order to avoid this computational difficulty, we suggest to apply an aggregation/disaggregation method which only addresses wellconditioned sub-problems and thus results in a stable algorithm. In contrast to existing methods, the aggregation step is done via a sampling algorithm which covers only small patches of the sampling space. Finally, the theoretical analysis is illustrated by two biomolecular examples.}, language = {en} } @misc{Weber2003, author = {Weber, Marcus}, title = {Clustering by using a simplex structure}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7782}, number = {04-03}, year = {2003}, abstract = {In this paper we interpret clustering as a mapping of data into a simplex. If the data itself has simplicial struture this mapping becomes linear. Spectral analysis is an often used tool for clustering data. We will show that corresponding singular vectors or eigenvectors comprise simplicial structure. Therefore they lead to a cluster algorithm, which consists of a simple linear mapping. An example for this kind of algorithms is the Perron cluster analysis (PCCA). We have applied it in practice to identify metastable sets of molecular dynamical systems. In contrast to other algorithms, this kind of approach provides an a priori criterion to determine the number of clusters. In this paper we extend the ideas to more general problems like clustering of bipartite graphs.}, language = {en} } @misc{WeberRungsarityotinSchliep2004, author = {Weber, Marcus and Rungsarityotin, Wasinee and Schliep, Alexander}, title = {Perron Cluster Analysis and Its Connection to Graph Partitioning for Noisy Data}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8140}, number = {04-39}, year = {2004}, abstract = {The problem of clustering data can be formulated as a graph partitioning problem. Spectral methods for obtaining optimal solutions have reveceived a lot of attention recently. We describe Perron Cluster Cluster Analysis (PCCA) and, for the first time, establish a connection to spectral graph partitioning. We show that in our approach a clustering can be efficiently computed using a simple linear map of the eigenvector data. To deal with the prevalent problem of noisy and possibly overlapping data we introduce the min Chi indicator which helps in selecting the number of clusters and confirming the existence of a partition of the data. This gives a non-probabilistic alternative to statistical mixture-models. We close with showing favorable results on the analysis of gene expressi on data for two different cancer types.}, language = {en} } @misc{WeberKubeRiemeretal.2006, author = {Weber, Marcus and Kube, Susanna and Riemer, Alexander and Bujotzek, Alexander}, title = {Efficient Sampling of the Stationary Distribution of Metastable Dynamical Systems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9467}, number = {07-03}, year = {2006}, abstract = {In this article we aim at an efficient sampling of the stationary distribution of dynamical systems in the presence of metastabilities. In the past decade many sophisticated algorithms have been inven ted in this field. We do not want to simply add a further one. We address the problem that one has applied a sampling algorithm for a dynamical system many times. This leads to different samplings which more or less represent the stationary distribution partially very well, but which are still far away from ergodicity or from the global stationary distribution. We will show how these samplings can be joined together in order to get one global sampling of the stationary distribution.}, language = {en} } @misc{KubeWeber2005, author = {Kube, Susanna and Weber, Marcus}, title = {Identification of Metastabilities in Monomolecular Conformation Kinetics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8956}, number = {06-01}, year = {2005}, abstract = {The identification of metastable conformations of molecules plays an important role in computational drug design. One main difficulty is the fact that the underlying dynamic processes take place in high dimensional spaces. Although the restriction of degrees of freedom to a few dihedral angles significantly reduces the complexity of the problem, the existing algorithms are time-consuming. They are based on the approximation of transition probabilities by an extensive sampling of states according to the Boltzmann distribution. We present a method which can identify metastable conformations without sampling the complete distribution. Our algorithm is based on local transition rates and uses only pointwise information about the potential energy surface. In order to apply the cluster algorithm PCCA+, we compute a few eigenvectors of the rate matrix by the Jacobi-Davidson method. Interpolation techniques are applied to approximate the thermodynamical weights of the clusters. The concluding example illustrates our approach for epigallocatechine, a molecule which can be described by seven dihedral angles.}, language = {en} } @misc{WalterWeber2006, author = {Walter, Lionel and Weber, Marcus}, title = {ConfJump : a fast biomolecular sampling method which drills tunnels through high mountains}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9204}, number = {06-26}, year = {2006}, abstract = {In order to compute the thermodynamic weights of the different metastable conformations of a molecule, we want to approximate the molecule's Boltzmann distribution in a reasonable time. This is an essential issue in computational drug design. The energy landscape of active biomolecules is generally very rough with a lot of high barriers and low regions. Many of the algorithms that perform such samplings (e.g. the hybrid Monte Carlo method) have difficulties with such landscapes. They are trapped in low-energy regions for a very long time and cannot overcome high barriers. Moving from one low-energy region to another is a very rare event. For these reasons, the distribution of the generated sampling points converges very slowly against the thermodynamically correct distribution of the molecule. The idea of ConfJump is to use \$a~priori\$ knowledge of the localization of low-energy regions to enhance the sampling with artificial jumps between these low-energy regions. The artificial jumps are combined with the hybrid Monte Carlo method. This allows the computation of some dynamical properties of the molecule. In ConfJump, the detailed balance condition is satisfied and the mathematically correct molecular distribution is sampled.}, language = {en} } @phdthesis{Weber2006, author = {Weber, Marcus}, title = {Meshless Methods in Confirmation Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10232}, year = {2006}, language = {en} } @misc{WeberBeckerKoeppenetal.2007, author = {Weber, Marcus and Becker, Roland and K{\"o}ppen, Robert and Durmaz, Vedat}, title = {Classical hybrid Monte-Carlo simulations of the interconversion of hexabromocyclododecane}, organization = {Zuse-Institut Berlin}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10308}, number = {07-31}, year = {2007}, abstract = {In this paper, we investigate the interconversion processes of the major flame retardant -- 1,2,5,6,9,10-hexabromocyclododecane (HBCD) -- by the means of statistical thermodynamics based on classical force-fields. Three ideas will be presented. First, the application of classical hybrid Monte-Carlo simulations for quantum mechanical processes will be justified. Second, the problem of insufficient convergence properties of hybrid Monte-Carlo methods for the generation of low temperature canonical ensembles will be solved by an interpolation approach. Furthermore, it will be shown how free energy differences can be used for a rate matrix computation. The results of our numerical simulations will be compared to experimental results.}, language = {en} } @misc{TungaWeber2012, author = {Tunga, Burcu and Weber, Marcus}, title = {Free Energy Calculation Using Mayer Cluster Expansion and Fluctuation Free Integration}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16031}, year = {2012}, abstract = {This work aims to develop a new algorithm to calculate the free energy of water molecules by using a deterministic way. For this purpose, we assume a closed system confined to a physical volume, having water molecules in gas phase. To calculate the free energy of this sytem we utilized Mayer cluster expansion and the fluctuation free integration method.}, language = {en} } @misc{WeberFackeldey2013, author = {Weber, Marcus and Fackeldey, Konstantin}, title = {Computing the Minimal Rebinding Effect Included in a Given Kinetics}, issn = {1438-0064}, doi = {10.1137/13091124X}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17796}, year = {2013}, abstract = {The rebinding effect is a phenomenon which occurs when observing a ligand-receptor binding process. On the macro scale this process comprises the Markov property. This Makovian view is spoiled when switching to the atomistic scale of a binding process. We therefore suggest a model which accurately describes the rebinding effect on the atomistic scale by allowing ''intermediate'' bound states. This allows us to define an indicator for the magnitude of rebinding and to formulate an optimization problem. The results form our examples show good agreement with data form laboratory.}, language = {en} } @misc{LieFackeldeyWeber2013, author = {Lie, Han Cheng and Fackeldey, Konstantin and Weber, Marcus}, title = {A square root approximation of transition rates for a Markov State Model}, issn = {1438-0064}, doi = {10.1137/120899959}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42195}, year = {2013}, abstract = {Trajectory- or mesh-based methods for analyzing the dynamical behavior of large molecules tend to be impractical due to the curse of dimensionality - their computational cost increases exponentially with the size of the molecule. We propose a method to break the curse by a novel square root approximation of transition rates, Monte Carlo quadrature and a discretization approach based on solving linear programs. With randomly sampled points on the molecular energy landscape and randomly generated discretizations of the molecular configuration space as our initial data, we construct a matrix describing the transition rates between adjacent discretization regions. This transition rate matrix yields a Markov State Model of the molecular dynamics. We use Perron cluster analysis and coarse-graining techniques in order to identify metastable sets in configuration space and approximate the transition rates between the metastable sets. Application of our method to a simple energy landscape on a two-dimensional configuration space provides proof of concept and an example for which we compare the performance of different discretizations. We show that the computational cost of our method grows only polynomially with the size of the molecule. However, finding discretizations of higher-dimensional configuration spaces in which metastable sets can be identified remains a challenge.}, language = {en} } @misc{NielsenFackeldeyWeber2013, author = {Nielsen, Adam and Fackeldey, Konstantin and Weber, Marcus}, title = {On a Generalized Transfer Operator}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43162}, year = {2013}, abstract = {We introduce a generalized operator for arbitrary stochastic processes by using a pre-kernel, which is a generalization of the Markov kernel. For deterministic processes, such an operator is already known as the Frobenius-Perron operator, which is defined for a large class of measures. For Markov processes, there exists transfer operators being only well defined for stationary measures in \$L^2\$. Our novel generalized transfer operator is well defined for arbitrary stochastic processes, in particular also for deterministic ones. We can show that this operator is acting on \$L^1\$. For stationary measures, this operator is also an endomorphism of \$L^2\$ and, therefore, allows for a mathematical analysis in Hilbert spaces.}, language = {en} } @article{FackeldeyKoltaiNeviretal.2019, author = {Fackeldey, Konstantin and Koltai, Peter and Nevir, Peter and Rust, Henning and Schild, Axel and Weber, Marcus}, title = {From metastable to coherent sets - Time-discretization schemes}, volume = {29}, journal = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, doi = {10.1063/1.5058128}, pages = {012101 -- 012101}, year = {2019}, abstract = {In this article, we show that these well-established spectral algorithms (like PCCA+, Perron Cluster Cluster Analysis) also identify coherent sets of non-autonomous dynamical systems. For the identification of coherent sets, one has to compute a discretization (a matrix T) of the transfer operator of the process using a space-time-discretization scheme. The article gives an overview about different time-discretization schemes and shows their applicability in two different fields of application.}, language = {en} } @article{AbbasSchneiderBollmannetal.2019, author = {Abbas, Aennes and Schneider, Ilona and Bollmann, Anna and Funke, Jan and Oehlmann, J{\"o}rg and Prasse, Carsten and Schulte-Oehlmann, Ulrike and Seitz, Wolfram and Ternes, Thomas and Weber, Marcus and Wesely, Henning and Wagner, Martin}, title = {What you extract is what you see: Optimising the preparation of water and wastewater samples for in vitro bioassays}, volume = {152}, journal = {Water Research}, doi = {10.1016/j.watres.2018.12.049}, pages = {47 -- 60}, year = {2019}, abstract = {The assessment of water quality is crucial for safeguarding drinking water resources and ecosystem integrity. To this end, sample preparation and extraction is critically important, especially when investigating emerging contaminants and the toxicity of water samples. As extraction methods are rarely optimised for bioassays but rather adopted from chemical analysis, this may result in a misrepresentation of the actual toxicity. In this study, surface water, groundwater, hospital and municipal wastewater were used to characterise the impacts of common sample preparation techniques (acidification, filtration and solid phase extraction (SPE)) on the outcomes of eleven in vitro bioassays. The latter covered endocrine activity (reporter gene assays for estrogen, androgen, aryl-hydrocarbon, retinoic acid, retinoid X, vitamin D, thyroid receptor), mutagenicity (Ames fluctuation test), genotoxicity (umu test) and cytotoxicity. Water samples extracted using different SPE sorbents (Oasis HLB, Supelco ENVI-Carb+, Telos C18/ENV) at acidic and neutral pH were compared for their performance in recovering biological effects. Acidification, commonly used for stabilisation, significantly altered the endocrine activity and toxicity of most (waste)water samples. Sample filtration did not affect the majority of endpoints but in certain cases affected the (anti-)estrogenic and dioxin-like activities. SPE extracts (10.4 × final concentration), including WWTP effluents, induced significant endocrine effects that were not detected in aqueous samples (0.63 × final concentration), such as estrogenic, (anti-)androgenic and dioxin-like activities. When ranking the SPE methods using multivariate Pareto optimisation an extraction with Telos C18/ENV at pH 7 was most effective in recovering toxicity. At the same time, these extracts were highly cytotoxic masking the endpoint under investigation. Compared to that, extraction at pH 2.5 enriched less cytotoxicity. In summary, our study demonstrates that sample preparation and extraction critically affect the outcome of bioassays when assessing the toxicity of water samples. Depending on the water matrix and the bioassay, these methods need to be optimised to accurately assess water quality.}, language = {en} } @article{ReuterFackeldeyWeber2019, author = {Reuter, Bernhard and Fackeldey, Konstantin and Weber, Marcus}, title = {Generalized Markov modeling of nonreversible molecular kinetics}, volume = {17}, journal = {The Journal of Chemical Physics}, number = {150}, doi = {10.1063/1.5064530}, pages = {174103}, year = {2019}, abstract = {Markov state models are to date the gold standard for modeling molecular kinetics since they enable the identification and analysis of metastable states and related kinetics in a very instructive manner. The state-of-the-art Markov state modeling methods and tools are very well developed for the modeling of reversible processes in closed equilibrium systems. On the contrary, they are largely not well suited to deal with nonreversible or even nonautonomous processes of nonequilibrium systems. Thus, we generalized the common Robust Perron Cluster Cluster Analysis (PCCA+) method to enable straightforward modeling of nonequilibrium systems as well. The resulting Generalized PCCA (G-PCCA) method readily handles equilibrium as well as nonequilibrium data by utilizing real Schur vectors instead of eigenvectors. This is implemented in the G-PCCA algorithm that enables the semiautomatic coarse graining of molecular kinetics. G-PCCA is not limited to the detection of metastable states but also enables the identification and modeling of cyclic processes. This is demonstrated by three typical examples of nonreversible systems.}, language = {en} } @article{ErnstFackeldeyVolkameretal.2019, author = {Ernst, Natalia and Fackeldey, Konstantin and Volkamer, Andrea and Opatz, Oliver and Weber, Marcus}, title = {Computation of temperature-dependent dissociation rates of metastable protein-ligand complexes}, volume = {45}, journal = {Molecular Simulation}, number = {11}, doi = {10.1080/08927022.2019.1610949}, pages = {904 -- 911}, year = {2019}, abstract = {Molecular simulations are often used to analyse the stability of protein-ligand complexes. The stability can be characterised by exit rates or using the exit time approach, i.e. by computing the expected holding time of the complex before its dissociation. However determining exit rates by straightforward molecular dynamics methods can be challenging for stochastic processes in which the exit event occurs very rarely. Finding a low variance procedure for collecting rare event statistics is still an open problem. In this work we discuss a novel method for computing exit rates which uses results of Robust Perron Cluster Analysis (PCCA+). This clustering method gives the possibility to define a fuzzy set by a membership function, which provides additional information of the kind 'the process is being about to leave the set'. Thus, the derived approach is not based on the exit event occurrence and, therefore, is also applicable in case of rare events. The novel method can be used to analyse the temperature effect of protein-ligand systems through the differences in exit rates, and, thus, open up new drug design strategies and therapeutic applications.}, language = {en} } @article{VillatoroWeberZuehlkeetal.2019, author = {Villatoro, Jos{\´e} and Weber, Marcus and Z{\"u}hlke, Martin and Lehmann, Andreas and Zechiowski, Karl and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Kreuzer, Oliver}, title = {Structural characterization of synthetic peptides using electronspray ion mobility spectrometry and molecular dynamics simulations}, volume = {436}, journal = {International Journal of Mass Spectrometry}, doi = {10.1016/j.ijms.2018.10.036}, pages = {108 -- 117}, year = {2019}, abstract = {Electrospray ionization-ion mobility spectrometry was employed for the determination of collision cross sections (CCS) of 25 synthetically produced peptides in the mass range between 540-3310 Da. The experimental measurement of the CCS is complemented by their calculation applying two different methods. One prediction method is the intrinsic size parameter (ISP) method developed by the Clemmer group. The second new method is based on the evaluation of molecular dynamics (MD) simulation trajectories as a whole, resulting in a single, averaged collision cross-section value for a given peptide in the gas phase. A high temperature MD simulation is run in order to scan through the whole conformational space. The lower temperature conformational distribution is obtained through thermodynamic reweighting. In the first part, various correlations, e.g. CCS vs. mass and inverse mobility vs. m/z correlations, are presented. Differences in CCS between peptides are also discussed in terms of their respective mass and m/z differences, as well as their respective structures. In the second part, measured and calculated CCS are compared. The agreement between the prediction results and the experimental values is in the same range for both calculation methods. While the calculation effort of the ISP method is much lower, the MD method comprises several tools providing deeper insights into the conformations of peptides. Advantages and limitations of both methods are discussed. Based on the separation of two pairs of linear and cyclic peptides of virtually the same mass, the influence of the structure on the cross sections is discussed. The shift in cross section differences and peak shape after transition from the linear to the cyclic peptide can be well understood by applying different MD tools, e.g. the root-mean-square deviation (RMSD) and the root mean square fluctuation (RMSF).}, language = {en} } @article{DonatiHeidaKelleretal.2018, author = {Donati, Luca and Heida, Martin and Keller, Bettina G. and Weber, Marcus}, title = {Estimation of the infinitesimal generator by square-root approximation}, volume = {30}, journal = {J. Phys.: Condens. Matter}, number = {42}, doi = {10.1088/1361-648X/aadfc8}, pages = {425201 -- 425201}, year = {2018}, abstract = {In recent years, for the analysis of molecular processes, the estimation of time-scales and transition rates has become fundamental. Estimating the transition rates between molecular conformations is—from a mathematical point of view—an invariant subspace projection problem. We present a method to project the infinitesimal generator acting on function space to a low-dimensional rate matrix. This projection can be performed in two steps. First, we discretize the conformational space in a Voronoi tessellation, then the transition rates between adjacent cells is approximated by the geometric average of the Boltzmann weights of the Voronoi cells. This method demonstrates that there is a direct relation between the potential energy surface of molecular structures and the transition rates of conformational changes. We will show also that this approximation is correct and converges to the generator of the Smoluchowski equation in the limit of infinitely small Voronoi cells. We present results for a two dimensional diffusion process and alanine dipeptide as a high-dimensional system.}, language = {en} } @article{ReidelbachWeberImhof2018, author = {Reidelbach, Marco and Weber, Marcus and Imhof, Petra}, title = {Prediction of perturbed proton transfer networks}, volume = {13}, journal = {PLoS ONE}, number = {12}, doi = {https://doi.org/10.1371/journal.pone.0207718}, pages = {e0207718 -- e0207718}, year = {2018}, abstract = {The transfer of protons through proton translocating channels is a complex process, for which direct samplings of different protonation states and side chain conformations in a transition network calculation provide an efficient, bias-free description. In principle, a new transition network calculation is required for every unsampled change in the system of interest, e.g. an unsampled protonation state change, which is associated with significant computational costs. Transition networks void of or including an unsampled change are termed unperturbed or perturbed, respectively. Here, we present a prediction method, which is based on an extensive coarse-graining of the underlying transition networks to speed up the calculations. It uses the minimum spanning tree and a corresponding sensitivity analysis of an unperturbed transition network as initial guess and refinement parameter for the determination of an unknown, perturbed transition network. Thereby, the minimum spanning tree defines a sub-network connecting all nodes without cycles and minimal edge weight sum, while the sensitivity analysis analyzes the stability of the minimum spanning tree towards individual edge weight reductions. Using the prediction method, we are able to reduce the calculation costs in a model system by up to 80\%, while important network properties are maintained in most predictions.}, language = {en} } @misc{FackeldeySikorskiWeber2018, author = {Fackeldey, Konstantin and Sikorski, Alexander and Weber, Marcus}, title = {Spectral Clustering for Non-reversible Markov Chains}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-70218}, year = {2018}, abstract = {Spectral clustering methods are based on solving eigenvalue problems for the identification of clusters, e.g. the identification of metastable subsets of a Markov chain. Usually, real-valued eigenvectors are mandatory for this type of algorithms. The Perron Cluster Analysis (PCCA+) is a well-known spectral clustering method of Markov chains. It is applicable for reversible Markov chains, because reversibility implies a real-valued spectrum. We also extend this spectral clustering method to non-reversible Markov chains and give some illustrative examples. The main idea is to replace the eigenvalue problem by a real-valued Schur decomposition. By this extension non-reversible Markov chains can be analyzed. Furthermore, the chains do not need to have a positive stationary distribution. In addition to metastabilities, dominant cycles and sinks can also be identified. This novel method is called GenPCCA (i.e. Generalized PCCA), since it includes the case of non reversible processes. We also apply the method to real world eye tracking data.}, language = {en} } @article{FackeldeySikorskiWeber2018, author = {Fackeldey, Konstantin and Sikorski, Alexander and Weber, Marcus}, title = {Spectral Clustering for Non-Reversible Markov Chains}, volume = {37}, journal = {Computational and Applied Mathematics}, number = {5}, doi = {https://doi.org/10.1007/s40314-018-0697-0}, pages = {6376 -- 6391}, year = {2018}, abstract = {Spectral clustering methods are based on solving eigenvalue problems for the identification of clusters, e.g., the identification of metastable subsets of a Markov chain. Usually, real-valued eigenvectors are mandatory for this type of algorithms. The Perron Cluster Analysis (PCCA+) is a well-known spectral clustering method of Markov chains. It is applicable for reversible Markov chains, because reversibility implies a real-valued spectrum. We also extend this spectral clustering method to non-reversible Markov chains and give some illustrative examples. The main idea is to replace the eigenvalue problem by a real-valued Schur decomposition. By this extension non-reversible Markov chains can be analyzed. Furthermore, the chains do not need to have a positive stationary distribution. In addition to metastabilities, dominant cycles and sinks can also be identified. This novel method is called GenPCCA (i.e., generalized PCCA), since it includes the case of non-reversible processes. We also apply the method to real-world eye-tracking data.}, language = {en} } @article{LieFackeldeyWeber2013, author = {Lie, Han Cheng and Fackeldey, Konstantin and Weber, Marcus}, title = {A Square Root Approximation of Transition Rates for a Markov State Model}, volume = {34}, journal = {SIAM. J. Matrix Anal. Appl.}, number = {2}, doi = {10.1137/120899959}, pages = {738 -- 756}, year = {2013}, language = {en} } @article{ScharkoiFackeldeyMerkulowetal.2013, author = {Scharkoi, Olga and Fackeldey, Konstantin and Merkulow, Igor and Andrae, Karsten and Weber, Marcus and Nehls, Irene}, title = {Conformational Analysis of Alternariol on the Quantum Level}, volume = {19}, journal = {J. Mol. Model.}, number = {6}, doi = {10.1007/s00894-013-1803-2}, pages = {2567 -- 2572}, year = {2013}, language = {en} } @misc{BujotzekSchuettNielsenetal.2013, author = {Bujotzek, Alexander and Sch{\"u}tt, Ole and Nielsen, Adam and Fackeldey, Konstantin and Weber, Marcus}, title = {Efficient Conformational Analysis by Partition-of-Unity Coupling}, journal = {Math Chem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42570}, year = {2013}, abstract = {Obtaining a sufficient sampling of conformational space is a common problem in molecular simulation. We present the implementation of an umbrella-like adaptive sampling approach based on function-based meshless discretization of conformational space that is compatible with state of the art molecular dynamics code and that integrates an eigenvector-based clustering approach for conformational analysis and the computation of inter-conformational transition rates. The approach is applied to three example systems, namely n-pentane, alanine dipeptide, and a small synthetic host-guest system, the latter two including explicitly modeled solvent.}, language = {en} } @misc{QuerDonatiKelleretal.2017, author = {Quer, Jannes and Donati, Luca and Keller, Bettina and Weber, Marcus}, title = {An automatic adaptive importance sampling algorithm for molecular dynamics in reaction coordinates}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62075}, year = {2017}, abstract = {In this article we propose an adaptive importance sampling scheme for dynamical quantities of high dimensional complex systems which are metastable. The main idea of this article is to combine a method coming from Molecular Dynamics Simulation, Metadynamics, with a theorem from stochastic analysis, Girsanov's theorem. The proposed algorithm has two advantages compared to a standard estimator of dynamic quantities: firstly, it is possible to produce estimators with a lower variance and, secondly, we can speed up the sampling. One of the main problems for building importance sampling schemes for metastable systems is to find the metastable region in order to manipulate the potential accordingly. Our method circumvents this problem by using an assimilated version of the Metadynamics algorithm and thus creates a non-equilibrium dynamics which is used to sample the equilibrium quantities.}, language = {en} } @article{SpahnDelVecchioLabuzetal.2017, author = {Spahn, Viola and Del Vecchio, Giovanna and Labuz, Dominika and Rodriguez-Gaztelumendi, Antonio and Massaly, N. and Temp, Julia and Durmaz, Vedat and Sabri, P. and Reidelbach, Marco and Machelska, Halina and Weber, Marcus and Stein, Christoph}, title = {A nontoxic pain killer designed by modeling of pathological receptor conformations}, volume = {355}, journal = {Science}, number = {6328}, doi = {10.1126/science.aai8636}, pages = {966 -- 969}, year = {2017}, language = {en} } @misc{WeberFackeldeySchuette2017, author = {Weber, Marcus and Fackeldey, Konstantin and Sch{\"u}tte, Christof}, title = {Set-free Markov State Building}, issn = {1438-0064}, doi = {10.1063/1.4978501}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62167}, year = {2017}, abstract = {Molecular dynamics (MD) simulations face challenging problems since the timescales of interest often are much longer than what is possible to simulate and even if sufficiently long simulation are possible the complex nature of the resulting simulation data makes interpretation difficult. Markov State Models (MSMs) help to overcome these problems by making experimentally relevant timescales accessible via coarse grained representations that also allows for convenient interpretation. However, standard set-based MSMs exhibit some caveats limiting their approximation quality and statistical significance. One of the main caveats results from the fact that typical MD trajectories repeatedly re-cross the boundary between the sets used to build the MSM which causes statistical bias in estimating the transition probabilities between these sets. In this article, we present a set-free approach to MSM building utilizing smooth overlapping ansatz functions instead of sets and an adaptive refinement approach. This kind of meshless discretization helps to overcome the recrossing problem and yields an adaptive refinement procedure that allows to improve the quality of the model while exploring state space and inserting new ansatz functions into the MSM.}, language = {en} } @misc{Weber2017, author = {Weber, Marcus}, title = {Eigenvalues of non-reversible Markov chains - A case study}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62191}, year = {2017}, abstract = {Finite reversible Markov chains are characterized by a transition matrix P that has real eigenvalues and pi-orthogonal eigenvectors, where pi is the stationary distribution of P. This means, that a transition matrix with complex eigenvalues corresponds to a non-reversible Markov chain. This observation leads to the question, whether the imaginary part of that eigendecomposition corresponds to or indicates the "pattern" of the nonreversibility. This article shows that the direct relation between imaginary parts of eigendecompositions and the non-reversibility of a transition matrix is not given. It is proposed to apply the Schur decomposition of P instead of the eigendecomposition in order to characterize its nonreversibility.}, language = {en} } @article{HartmannSchuetteWeberetal.2017, author = {Hartmann, Carsten and Sch{\"u}tte, Christof and Weber, Marcus and Zhang, Wei}, title = {Importance sampling in path space for diffusion processes with slow-fast variables}, journal = {Probability Theory and Related Fields}, doi = {10.1007/s00440-017-0755-3}, pages = {1 -- 52}, year = {2017}, abstract = {Importance sampling is a widely used technique to reduce the variance of a Monte Carlo estimator by an appropriate change of measure. In this work, we study importance sampling in the framework of diffusion process and consider the change of measure which is realized by adding a control force to the original dynamics. For certain exponential type expectation, the corresponding control force of the optimal change of measure leads to a zero-variance estimator and is related to the solution of a Hamilton-Jacobi-Bellmann equation. We focus on certain diffusions with both slow and fast variables, and the main result is that we obtain an upper bound of the relative error for the importance sampling estimators with control obtained from the limiting dynamics. We demonstrate our approximation strategy with an illustrative numerical example.}, language = {en} } @article{VillatoroZuehlkeRiebeetal.2016, author = {Villatoro, Jos{\´e} and Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and Weber, Marcus and Riedel, Jens and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {IR-MALDI ion mobility spectrometry: physical source characterization and application as HPLC detector}, journal = {International Journal for Ion Mobility Spectrometry}, number = {19/4}, doi = {10.1007/s12127-016-0208-1}, pages = {197 -- 297}, year = {2016}, language = {en} } @article{GuerlerMollWeberetal.2008, author = {Guerler, A. and Moll, Sebastian and Weber, Marcus and Meyer, Holger and Cordes, Frank}, title = {Selection and flexible optimization of binding modes from conformation ensembles}, volume = {92}, journal = {Biosystems}, number = {1}, doi = {DOI: 10.1016/j.biosystems.2007.11.004}, pages = {42 -- 48}, year = {2008}, language = {en} } @article{HaackRoeblitzScharkoietal.2010, author = {Haack, Fiete and R{\"o}blitz, Susanna and Scharkoi, Olga and Schmidt, Burkhard and Weber, Marcus}, title = {Adaptive Spectral Clustering for Conformation Analysis}, volume = {1281}, journal = {AIP Conference Proceedings}, number = {1}, publisher = {AIP}, doi = {10.1063/1.3498116}, pages = {1585 -- 1588}, year = {2010}, language = {en} } @incollection{DurmazFackeldeyWeber2011, author = {Durmaz, Vedat and Fackeldey, Konstantin and Weber, Marcus}, title = {A rapidly Mixing Monte Carlo Method for the Simulation of Slow Molecular Processes}, booktitle = {Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science}, editor = {Mode, Ch.}, publisher = {InTech}, year = {2011}, language = {en} } @article{GuerlerMollWeberetal.2007, author = {G{\"u}rler, A. and Moll, Sebastian and Weber, Marcus and Meyer, Holger and Cordes, Frank}, title = {Selection and flexible optimization of binding modes from conformation ensembles}, journal = {Biosystems}, year = {2007}, language = {en} } @article{KubeWeber2007, author = {Kube, Susanna and Weber, Marcus}, title = {A Coarse Graining Method for the Identification of Transition rates between Molecular Conformations}, volume = {126}, journal = {Journal of Chemical Physics}, number = {2}, doi = {10.1063/1.2404953}, year = {2007}, language = {en} } @inproceedings{WeberKube2005, author = {Weber, Marcus and Kube, Susanna}, title = {Robust Perron Cluster Analysis for Various Applications in Computational Life Science}, booktitle = {Computational Life Sciences}, pages = {57 -- 66}, year = {2005}, language = {en} } @article{MetznerWeberSchuette2010, author = {Metzner, Ph. and Weber, Marcus and Sch{\"u}tte, Christof}, title = {Observation uncertainty in reversible Markov chains}, volume = {82}, journal = {Phys. Rev. E}, number = {3}, publisher = {American Physical Society}, doi = {10.1103/PhysRevE.82.031114}, pages = {031114}, year = {2010}, language = {en} } @article{KlimmBujotzekWeber2011, author = {Klimm, Martina and Bujotzek, Alexander and Weber, Marcus}, title = {Direct Reweighting Strategies in Conformation Dynamics}, volume = {65(2)}, journal = {MATCH Commun. Math. Comp. Chem.}, pages = {333 -- 346}, year = {2011}, language = {en} } @inproceedings{KubeWeber2008, author = {Kube, Susanna and Weber, Marcus}, title = {Computation of equilibrium densities in metastable dynamical systems by domain decomposition}, volume = {1048}, booktitle = {Numerical Analysis and Applied Mathematics, International Conference on Numerical Analysis and Applied Mathematics 2008}, publisher = {AIP Conference Proceedings}, pages = {339 -- 342}, year = {2008}, language = {en} } @article{ScheibeBujotzekDerneddeetal.2011, author = {Scheibe, Ch. and Bujotzek, Alexander and Dernedde, Jens and Weber, Marcus and Seitz, O.}, title = {DNA-programmed spatial screening of carbohydrate-lectin interactions}, volume = {2}, journal = {Chem. Sci.}, pages = {770 -- 775}, year = {2011}, language = {en} } @article{SiegelAndraeProskeetal.2010, author = {Siegel, D. and Andrae, Karsten and Proske, Matthias and Kochan, C. and Koch, Matthias and Weber, Marcus and Nehls, Irene}, title = {Dynamic covalent hydrazine chemistry as a specific extraction and cleanup technique for the quantification of the Fusarium mycotoxin zearalenone in edible oils}, volume = {1217(15)}, journal = {Journal of Chromatography A}, pages = {2206 -- 15}, year = {2010}, language = {en} } @phdthesis{Weber2006, author = {Weber, Marcus}, title = {Meshless Methods in Conformation Dynamics}, year = {2006}, language = {en} } @incollection{WeberRungsarityotinSchliep2006, author = {Weber, Marcus and Rungsarityotin, Wasinee and Schliep, Alexander}, title = {An Indicator for the Number of Clusters}, booktitle = {From Data and Information Analysis to Knowledge Engineering}, editor = {Spiliopoulou, Myra and Kruse, Rudolf and Borgelt, Christian and N{\"u}rnberger, Andreas and Gaul, Wolfgang}, publisher = {Springer Berlin Heidelberg}, pages = {103 -- 110}, year = {2006}, language = {en} } @article{WeberAndrae2010, author = {Weber, Marcus and Andrae, Karsten}, title = {A simple method for the estimation of entropy differences}, volume = {63(2)}, journal = {MATCH Commun. Math. Comp. Chem. 2010}, pages = {319 -- 332}, year = {2010}, language = {en} } @article{WeberBeckerKoeppenetal.2008, author = {Weber, Marcus and Becker, Roland and K{\"o}ppen, Robert and Durmaz, Vedat}, title = {Classical hybrid Monte-Carlo simulations of the interconversion of hexabromocyclododecane}, volume = {34}, journal = {Journal of Molecular Simulation}, number = {7}, pages = {727 -- 736}, year = {2008}, language = {en} } @article{WeberBujotzekAndraeetal.2011, author = {Weber, Marcus and Bujotzek, Alexander and Andrae, Karsten and Weinhart, M. and Haag, Rainer}, title = {Computational entropy estimation of linear polyether modified surfaces and correlation with protein resistant properties of such surfaces}, journal = {J. Mol. Sim.}, year = {2011}, language = {en} } @article{FoersterBrauerFuersteetal.2007, author = {F{\"o}rster, C. and Brauer, Arnd B. E. and F{\"u}rste, J. and Betzel, C. and Weber, Marcus and Cordes, Frank and Erdmann, V.}, title = {Visualization of the tRNA(Ser) acceptor step binding site in the seryl-tRNA synthetase}, volume = {362}, journal = {BBRC}, number = {2}, pages = {415 -- 418}, year = {2007}, language = {en} } @inproceedings{KubeWeber2008, author = {Kube, Susanna and Weber, Marcus}, title = {Preserving the Markov Property of Reduced Reversible Markov Chains}, volume = {1048}, booktitle = {Numerical Analysis and Applied Mathematics, International Conference on Numerical Analysis and Applied Mathematics 2008}, pages = {593 -- 596}, year = {2008}, language = {en} } @article{WeberKubeWalteretal.2007, author = {Weber, Marcus and Kube, Susanna and Walter, Lionel and Deuflhard, Peter}, title = {Stable Computation of Probability Densities of Metastable Dynamical Systems}, volume = {6}, journal = {SIAM J. Multiscale Model. Simul.}, number = {2}, pages = {396 -- 416}, year = {2007}, language = {en} } @article{KoeppenRiedelProskeetal.2012, author = {K{\"o}ppen, Robert and Riedel, Juliane and Proske, Matthias and Drzymala, Sarah and Rasenko, Tatjana and Durmaz, Vedat and Weber, Marcus and Koch, Matthias}, title = {Photochemical trans-/cis-isomerization and quantification of zearalenone in edible oils}, volume = {60}, journal = {J. Agric. Food Chem.}, doi = {10.1021/jf3037775}, pages = {11733 -- 11740}, year = {2012}, language = {en} } @article{DurmazWeberBecker2012, author = {Durmaz, Vedat and Weber, Marcus and Becker, Roland}, title = {How to Simulate Affinities for Host-Guest Systems Lacking Binding Mode Information: application to the liquid chromatographic separation of hexabromocyclododecane stereoisomers}, volume = {18}, journal = {Journal of Molecular Modeling}, doi = {10.1007/s00894-011-1239-5}, pages = {2399 -- 2408}, year = {2012}, language = {en} } @article{WeberBujotzekHaag2012, author = {Weber, Marcus and Bujotzek, Alexander and Haag, Rainer}, title = {Quantifying the rebinding effect in multivalent chemical ligand-receptor systems}, volume = {137}, journal = {J. Chem. Phys.}, number = {5}, pages = {054111}, year = {2012}, language = {en} } @inproceedings{FackeldeyBujotzekWeber2012, author = {Fackeldey, Konstantin and Bujotzek, Alexander and Weber, Marcus}, title = {A meshless discretization method for Markov state models applied to explicit water peptide folding simulations}, volume = {89}, booktitle = {Meshfree Methods for Partial Differential Equations VI}, publisher = {Springer}, pages = {141 -- 154}, year = {2012}, language = {en} } @article{FastingSchalleyWeberetal.2012, author = {Fasting, Carlo and Schalley, Christoph A. and Weber, Marcus and Seitz, Oliver and Hecht, Stefan and Koksch, Beate and Dernedde, Jens and Graf, Christina and Knapp, Ernst-Walter and Haag, Rainer}, title = {Multivalency as a Chemical Organization and Action Principle}, volume = {51}, journal = {Angew. Chem. Int. Ed.}, number = {42}, pages = {10472 -- 10498}, year = {2012}, language = {en} } @article{KubeLasserWeber2008, author = {Kube, Susanna and Lasser, Caroline and Weber, Marcus}, title = {Monte Carlo sampling of Wigner functions and surface hopping quantum dynamics}, volume = {228}, journal = {Journal of Computational Physics}, number = {6}, doi = {10.1016/j.jcp.2008.11.016}, pages = {1947 -- 1962}, year = {2008}, language = {en} } @misc{KellermannWeberBujotzek2007, author = {Kellermann, R. and Weber, Marcus and Bujotzek, Alexander}, title = {Vom Dietrich zum Sicherheitsschl{\"u}ssel - Mathematiker des Matheon simulieren neuen Wirkstoff f{\"u}r die Diabetes-Behandlung}, number = {2}, publisher = {DFG-Forschungszentrum Matheon}, year = {2007}, language = {en} } @article{KoeppenBeckerWeberetal.2009, author = {K{\"o}ppen, Robert and Becker, Roland and Weber, Marcus and Durmaz, Vedat and Nehls, Irene}, title = {HBCD stereoisimers: Thermal interconversion and enantiospecific trace analysis in biota}, volume = {70}, journal = {Organohalogen Compounds}, pages = {910 -- 913}, year = {2009}, language = {en} } @article{BujotzekWeber2009, author = {Bujotzek, Alexander and Weber, Marcus}, title = {Efficient Simulation of Ligand-Receptor Binding Processes Using the Conformation Dynamics Approach}, volume = {7(5)}, journal = {Journal of Bioinformatics and Computational Biology}, pages = {811 -- 831}, year = {2009}, language = {en} } @incollection{Weber2009, author = {Weber, Marcus}, title = {Spurenstoffe im Trinkwasser - Risikoqualifizierung im Rechner?}, booktitle = {Schriftenreihe des Vereins f{\"u}r Wasser-, Boden- und Lufthygiene}, editor = {Dunemann, L. and Schmoll, O.}, year = {2009}, language = {en} } @article{WeberDurmazBeckeretal.2009, author = {Weber, Marcus and Durmaz, Vedat and Becker, Roland and Esslinger, Susanne}, title = {Predictive Identification of Pentabromocyclododecane (PBCD) Isomers with high Binding Affinity to hTTR}, volume = {71}, journal = {Organohalogen Compounds}, pages = {247 -- 252}, year = {2009}, language = {en} } @article{FackeldeyKlimmWeber2012, author = {Fackeldey, Konstantin and Klimm, Martina and Weber, Marcus}, title = {A Coarse Graining Method for the Dimension Reduction of the State Space of Biomolecules}, volume = {5}, journal = {Journal of Mathematical Chemistry}, number = {9}, pages = {2623 -- 2635}, year = {2012}, language = {en} } @article{RoeblitzWeber2009, author = {R{\"o}blitz, Susanna and Weber, Marcus}, title = {Fuzzy Spectral Clustering by PCCA+}, journal = {Classification and Clustering: Models, Software and Applications}, number = {WIAS Report No. 26}, pages = {73 -- 79}, year = {2009}, language = {en} } @article{RoeblitzWeber2013, author = {R{\"o}blitz, Susanna and Weber, Marcus}, title = {Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification}, volume = {7}, journal = {Advances in Data Analysis and Classification}, number = {2}, doi = {10.1007/s11634-013-0134-6}, pages = {147 -- 179}, year = {2013}, language = {en} } @article{ScharkoiEsslingerBeckeretal.2014, author = {Scharkoi, Olga and Esslinger, Susanne and Becker, Roland and Weber, Marcus and Nehls, Irene}, title = {Predicting sites of cytochrome P450-mediated hydroxylation applied to CYP3A4 and hexabromocyclododecane}, journal = {Molecular Simulation}, doi = {10.1080/08927022.2014.898845}, year = {2014}, language = {en} } @article{HaackFackeldeyRoeblitzetal.2013, author = {Haack, Fiete and Fackeldey, Konstantin and R{\"o}blitz, Susanna and Scharkoi, Olga and Weber, Marcus and Schmidt, Burkhard}, title = {Adaptive spectral clustering with application to tripeptide conformation analysis}, volume = {139}, journal = {The Journal of Chemical Physics}, doi = {10.1063/1.4830409}, pages = {110 -- 194}, year = {2013}, language = {en} } @inproceedings{IgdeWoelkRoeblitzetal.2015, author = {Igde, Sinaida and W{\"o}lk, Hendrik and R{\"o}blitz, Susanna and Reidelbach, Marco and Weber, Marcus and Hartmann, Laura}, title = {Identifying Multivalent Binding Kinetics of Precision Glycomacromolecules: A Kinetic Study Using kinITC}, booktitle = {M{\"u}nster Symposium on Cooperative Effects 2015 - SFB 858, at Westf{\"a}lische Wilhelms-Universit{\"a}t M{\"u}nster, 2015}, year = {2015}, abstract = {Multivalent sugar/protein interactions are well-known to proceed through different binding modes 1-5 which in turn can be described by their binding kinetics 3-5. This study provides additional insight into the association and dissociation reaction rates of complex multivalent sugar/protein interactions. Binding kinetics of recently introduced multivalent precision glycomacromolecules 6-8 to Concanavalin A (Con A) were studied by " kinetic Isothermal Titration Calorimetry " (kinITC) 9-11. The effect of multivalency is evaluated by comparing rate constants of glycomacromolecules obtaining the same and different valency of mannose ligands and by variation of the overall backbone properties, such as hydrophilic/ hydrophoboc. In addition, binding kinetics were studied using different conformations of Con A (homodimer vs.-tetramer) and thus a different protein valency. Our results show that precision glycomacromolecule/Con A binding proceeds non-cooperatively. Further, association and dissociation rates are mainly described by intermolecular complex formation. Together with the so-called functional valency, we can discriminate between " bound " and " unbound " states for macroscopic on-and off-rates, even for such complex glycooligomer/protein systems. By comparing e.g. a mono-to a divalent glycomacromolecule for their binding to dimeric Con A, we see a lower dissociation rate for the latter. As both bind monovalently to Con A, this is a strong indication for a statistical rebinding event. Further, there is a strong dependence of multivalent binding kinetics on the ligand density of glycomacromolecules as well as the Con A conformation and thus the overall on-and off-rates.}, language = {en} } @article{QuerDonatiKelleretal.2018, author = {Quer, Jannes and Donati, Luca and Keller, Bettina and Weber, Marcus}, title = {An automatic adaptive importance sampling algorithm for molecular dynamics in reaction coordinates}, volume = {40}, journal = {SIAM Journal on Scientific Computing}, number = {2}, doi = {10.1137/17m1124772}, pages = {A653 -- A670}, year = {2018}, abstract = {In this article we propose an adaptive importance sampling scheme for dynamical quantities of high dimensional complex systems which are metastable. The main idea of this article is to combine a method coming from Molecular Dynamics Simulation, Metadynamics, with a theorem from stochastic analysis, Girsanov's theorem. The proposed algorithm has two advantages compared to a standard estimator of dynamic quantities: firstly, it is possible to produce estimators with a lower variance and, secondly, we can speed up the sampling. One of the main problems for building importance sampling schemes for metastable systems is to find the metastable region in order to manipulate the potential accordingly. Our method circumvents this problem by using an assimilated version of the Metadynamics algorithm and thus creates a non-equilibrium dynamics which is used to sample the equilibrium quantities.}, language = {en} } @article{Weber2018, author = {Weber, Marcus}, title = {Transformationsprodukte im Kl{\"a}rwerk: Mathematische Ans{\"a}tze der Bewertung}, journal = {KA Korrespondenz Abwasser, Abfall}, year = {2018}, language = {de} } @article{ReuterWeberFackeldeyetal.2018, author = {Reuter, Bernhard and Weber, Marcus and Fackeldey, Konstantin and R{\"o}blitz, Susanna and Garcia, Martin E.}, title = {Generalized Markov State Modeling Method for Nonequilibrium Biomolecular Dynamics: Exemplified on Amyloid β Conformational Dynamics Driven by an Oscillating Electric Field}, volume = {14}, journal = {Journal of Chemical Theory and Computation}, number = {7}, doi = {10.1021/acs.jctc.8b00079}, pages = {3579 -- 3594}, year = {2018}, abstract = {Markov state models (MSMs) have received an unabated increase in popularity in recent years, as they are very well suited for the identification and analysis of metastable states and related kinetics. However, the state-of-the-art Markov state modeling methods and tools enforce the fulfillment of a detailed balance condition, restricting their applicability to equilibrium MSMs. To date, they are unsuitable to deal with general dominant data structures including cyclic processes, which are essentially associated with nonequilibrium systems. To overcome this limitation, we developed a generalization of the common robust Perron Cluster Cluster Analysis (PCCA+) method, termed generalized PCCA (G-PCCA). This method handles equilibrium and nonequilibrium simulation data, utilizing Schur vectors instead of eigenvectors. G-PCCA is not limited to the detection of metastable states but enables the identification of dominant structures in a general sense, unraveling cyclic processes. This is exemplified by application of G-PCCA on nonequilibrium molecular dynamics data of the Amyloid β (1-40) peptide, periodically driven by an oscillating electric field.}, language = {en} } @article{WagnerZapataWanetal.2018, author = {Wagner, Sabine and Zapata, Carlos and Wan, Wei and Gawlitza, Kornelia and Weber, Marcus and Rurack, Knut}, title = {Role of Counterions in Molecularly Imprinted Polymers for Anionic Species}, volume = {34}, journal = {Langmuir}, number = {23}, doi = {10.1021/acs.langmuir.8b00500}, pages = {6963 -- 6975}, year = {2018}, abstract = {Small-molecule oxoanions are often imprinted noncovalently as carboxylates into molecularly imprinted polymers (MIPs), requiring the use of an organic counterion. Popular species are either pentamethylpiperidine (PMP) as a protonatable cation or tetraalkylammonium (TXA) ions as permanent cations. The present work explores the influence of the TXA as a function of their alkyl chain length, from methyl to octyl, using UV/vis absorption, fluorescence titrations, and HPLC as well as MD simulations. Protected phenylalanines (Z-L/D-Phe) served as templates/analytes. While the influence of the counterion on the complex stability constants and anion-induced spectral changes shows a monotonous trend with increasing alkyl chain length at the prepolymerization stage, the cross-imprinting/rebinding studies showed a unique pattern that suggested the presence of adaptive cavities in the MIP matrix, related to the concept of induced fit of enzyme-substrate interaction. Larger cavities formed in the presence of larger counterions can take up pairs of Z-x-Phe and smaller TXA, eventually escaping spectroscopic detection. Correlation of the experimental data with the MD simulations revealed that counterion mobility, the relative distances between the three partners, and the hydrogen bond lifetimes are more decisive for the response features observed than actual distances between interacting atoms in a complex or the orientation of binding moieties. TBA has been found to yield the highest imprinting factor, also showing a unique dual behavior regarding the interaction with template and fluorescent monomer. Finally, interesting differences between both enantiomers have been observed in both theory and experiment, suggesting true control of enantioselectivity. The contribution concludes with suggestions for translating the findings into actual MIP development.}, language = {en} } @article{SpahnDelVecchioRodriguezGaztelumendietal.2018, author = {Spahn, Viola and Del Vecchio, Giovanna and Rodriguez-Gaztelumendi, Antonio and Temp, Julia and Labuz, Dominika and Kloner, Michael and Reidelbach, Marco and Machelska, Halina and Weber, Marcus and Stein, Christoph}, title = {Opioid receptor signaling, analgesic and side effects induced by a computationally designed pH-dependent agonist}, volume = {8}, journal = {Scientific Reports}, publisher = {Springer Nature}, pages = {8965}, year = {2018}, abstract = {Novel pain killers without adverse effects are urgently needed.}, language = {en} } @article{ErlekamIgdeRoeblitzetal.2019, author = {Erlekam, Franziska and Igde, Sinaida and R{\"o}blitz, Susanna and Hartmann, Laura and Weber, Marcus}, title = {Modeling of Multivalent Ligand-Receptor Binding Measured by kinITC}, volume = {7}, journal = {Computation}, number = {3}, doi = {10.3390/computation7030046}, pages = {46}, year = {2019}, abstract = {In addition to the conventional Isothermal Titration Calorimetry (ITC), kinetic ITC (kinITC) not only gains thermodynamic information, but also kinetic data from a biochemical binding process. Moreover, kinITC gives insights into reactions consisting of two separate kinetic steps, such as protein folding or sequential binding processes. The ITC method alone cannot deliver kinetic parameters, especially not for multivalent bindings. This paper describes how to solve the problem using kinITC and an invariant subspace projection. The algorithm is tested for multivalent systems with different valencies.}, language = {en} } @article{Weber2019, author = {Weber, Marcus}, title = {Transformationsprodukte im Kl{\"a}rwerk: Mathematische Ans{\"a}tze der Bewertung}, volume = {7}, journal = {KA Korrespondenz Abwasser, Abfall}, pages = {551 -- 557}, year = {2019}, language = {de} } @article{VenkatareddyWilkeErnstetal.2019, author = {Venkatareddy, Narendra Lagumaddepalli and Wilke, Patrick and Ernst, Natalia and Horch, Justus and Weber, Marcus and Dallmann, Andre and B{\"o}rner, Hans G.}, title = {Mussel-glue inspired adhesives: A study on the relevance of L-Dopa and the function of the sequence at nanomaterial-peptide interfaces}, volume = {6}, journal = {Advanced Materials Interfaces}, number = {13}, doi = {10.1002/admi.201900501}, pages = {1900501}, year = {2019}, abstract = {Mussel glue-proteins undergo structural transitions at material interfaces to optimize adhesive surface contacts. Those intriguing structure responses are mimicked by a mussel-glue mimetic peptide (HSY*SGWSPY*RSG (Y* = l-Dopa)) that was previously selected by phage-display to adhere to Al2O3 after enzymatic activation. Molecular level insights into the full-length adhesion domain at Al2O3 surfaces are provided by a divergent-convergent analysis, combining nuclear Overhauser enhancement based 2D NOESY and saturation transfer difference NMR analysis of submotifs along with molecular dynamics simulations of the full-length peptide. The peptide is divided into two submotifs, each containing one Dopa "anchor" (Motif-1 and 2). The analysis proves Motif-1 to constitute a dynamic Al2O3 binder and adopting an "M"-structure with multiple surface contacts. Motif-2 binds stronger by two surface contacts, forming a compact "C"-structure. Taking these datasets as constraints enables to predict the structure and propose a binding process model of the full-length peptide adhering to Al2O3.}, language = {en} } @article{DelVecchioLabuzTempetal.2019, author = {Del Vecchio, Giovanna and Labuz, Dominika and Temp, Julia and Seitz, Viola and Kloner, Michael and Negrete, Roger and Rodriguez-Gaztelumendi, Antonio and Weber, Marcus and Machelska, Halina and Stein, Christoph}, title = {pKa of opioid ligands as a discriminating factor for side effects}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-55886-1}, pages = {19344}, year = {2019}, abstract = {The non-selective activation of central and peripheral opioid receptors is a major shortcoming of currently available opioids. Targeting peripheral opioid receptors is a promising strategy to preclude side effects. Recently, we showed that fentanyl-derived μ-opioid receptor (MOR) agonists with reduced acid dissociation constants (pKa) due to introducing single fluorine atoms produced injury-restricted antinociception in rat models of inflammatory, postoperative and neuropathic pain. Here, we report that a new double-fluorinated compound (FF6) and fentanyl show similar pKa, MOR affinity and [35S]-GTPγS binding at low and physiological pH values. In vivo, FF6 produced antinociception in injured and non-injured tissue, and induced sedation and constipation. The comparison of several fentanyl derivatives revealed a correlation between pKa values and pH-dependent MOR activation, antinociception and side effects. An opioid ligand's pKa value may be used as discriminating factor to design safer analgesics.}, language = {en} } @article{VillatoroZuehlkeRiebeetal.2020, author = {Villatoro, Jos{\´e} and Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and Weber, Marcus and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Sub-ambient pressure IR-MALDI ion mobility spectrometer for the determination of low and high field mobilities}, volume = {412}, journal = {Analytical and Bioanalytical Chemistry}, doi = {10.1007/s00216-020-02735-0}, pages = {5247 -- 5260}, year = {2020}, abstract = {A new ion mobility (IM) spectrometer, enabling mobility measurements in the pressure range between 5 and 500 mbar and in the reduced field strength range E/N of 5-90 Td, was developed and characterized. Reduced mobility (K0) values were studied under low E/N (constant value) as well as high E/N (deviation from low field K0) for a series of molecular ions in nitrogen. Infrared matrix-assisted laser desorption ionization (IR-MALDI) was used in two configurations: a source working at atmospheric pressure (AP) and, for the first time, an IR-MALDI source working with a liquid (aqueous) matrix at sub-ambient/reduced pressure (RP). The influence of RP on IR-MALDI was examined and new insights into the dispersion process were gained. This enabled the optimization of the IM spectrometer for best analytical performance. While ion desolvation is less efficient at RP, the transport of ions is more efficient, leading to intensity enhancement and an increased number of oligomer ions. When deciding between AP and RP IR-MALDI, a trade-off between intensity and resolving power has to be considered. Here, the low field mobility of peptide ions was first measured and compared with reference values from ESI-IM spectrometry (at AP) as well as collision cross sections obtained from molecular dynamics simulations. The second application was the determination of the reduced mobility of various substituted ammonium ions as a function of E/N in nitrogen. The mobility is constant up to a threshold at high E/N. Beyond this threshold, mobility increases were observed. This behavior can be explained by the loss of hydrated water molecules.}, language = {en} } @article{WeberWeitereAutoren2020, author = {Weber, Marcus and Weitere Autoren,}, title = {DIN SPEC 2343: {\"U}bertragung von sprachbasierten Daten zwischen K{\"u}nstlichen Intelligenzen - Festlegung von Parametern und Formaten}, journal = {Beuth Verlag}, editor = {Reichardt, Christine}, year = {2020}, abstract = {Dieses Dokument legt Parameter und Formate f{\"u}r die {\"U}bertragung sprachbasierter Daten zwischen verschiedenen KI-{\"O}kosystemen fest.}, language = {de} } @article{RabbenRayWeber2020, author = {Rabben, Robert Julian and Ray, Sourav and Weber, Marcus}, title = {ISOKANN: Invariant subspaces of Koopman operators learned by a neural network}, volume = {153}, journal = {The Journal of Chemical Physics}, number = {11}, doi = {10.1063/5.0015132}, pages = {114109}, year = {2020}, abstract = {The problem of determining the rate of rare events in dynamical systems is quite well-known but still difficult to solve. Recent attempts to overcome this problem exploit the fact that dynamic systems can be represented by a linear operator, such as the Koopman operator. Mathematically, the rare event problem comes down to the difficulty in finding invariant subspaces of these Koopman operators K. In this article, we describe a method to learn basis functions of invariant subspaces using an artificial neural Network.}, language = {en} } @misc{RaySunkaraSchuetteetal.2020, author = {Ray, Sourav and Sunkara, Vikram and Sch{\"u}tte, Christof and Weber, Marcus}, title = {How to calculate pH-dependent binding rates for receptor-ligand systems based on thermodynamic simulations with different binding motifs}, issn = {1438-0064}, doi = {10.1080/08927022.2020.1839660}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78437}, year = {2020}, abstract = {Molecular simulations of ligand-receptor interactions are a computational challenge, especially when their association- (``on''-rate) and dissociation- (``off''-rate) mechanisms are working on vastly differing timescales. In addition, the timescale of the simulations themselves is, in practice, orders of magnitudes smaller than that of the mechanisms; which further adds to the complexity of observing these mechanisms, and of drawing meaningful and significant biological insights from the simulation. One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)- N-phenyl propionamide (NFEPP) in a \$\mu\$-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab, who investigated the influence of pH on the inhibitory constant of fentanyl and NFEPP (Spahn et al. 2017). MD simulations are far more accessible and cost-effective than in vitro and in vivo studies. Especially in the context of the current opioid crisis, MD simulations can aid in unravelling molecular functionality and assist in clinical decision-making; the approaches presented in this paper are a pertinent step forward in this direction.}, language = {en} } @article{FackeldeyRoehmNiknejadetal.2021, author = {Fackeldey, Konstantin and R{\"o}hm, Jonas and Niknejad, Amir and Chewle, Surahit and Weber, Marcus}, title = {Analyzing Raman Spectral Data without Separabiliy Assumption}, volume = {3}, journal = {Journal of Mathematical Chemistry}, number = {59}, publisher = {Springer}, arxiv = {http://arxiv.org/abs/2007.06428}, doi = {10.1007/s10910-020-01201-7}, pages = {575 -- 596}, year = {2021}, abstract = {Raman spectroscopy is a well established tool for the analysis of vibration spectra, which then allow for the determination of individual substances in a chemical sample, or for their phase transitions. In the Time-Resolved-Raman-Sprectroscopy the vibration spectra of a chemical sample are recorded sequentially over a time interval, such that conclusions for intermediate products (transients) can be drawn within a chemical process. The observed data-matrix M from a Raman spectroscopy can be regarded as a matrix product of two unknown matrices W and H, where the first is representing the contribution of the spectra and the latter represents the chemical spectra. One approach for obtaining W and H is the non-negative matrix factorization. We propose a novel approach, which does not need the commonly used separability assumption. The performance of this approach is shown on a real world chemical example.}, language = {en} } @article{RoehlWeberFackeldey2021, author = {R{\"o}hl, Susanne and Weber, Marcus and Fackeldey, Konstantin}, title = {Computing the minimal rebinding effect for non-reversible processes}, volume = {19}, journal = {Multiscale Modeling and Simulation}, number = {1}, arxiv = {http://arxiv.org/abs/2007.08403}, doi = {https://doi.org/10.1137/20M1334966}, pages = {460 -- 477}, year = {2021}, abstract = {The aim of this paper is to investigate the rebinding effect, a phenomenon describing a "short-time memory" which can occur when projecting a Markov process onto a smaller state space. For guaranteeing a correct mapping by the Markov State Model, we assume a fuzzy clustering in terms of membership functions, assigning degrees of membership to each state. The macro states are represented by the membership functions and may be overlapping. The magnitude of this overlap is a measure for the strength of the rebinding effect, caused by the projection and stabilizing the system. A minimal bound for the rebinding effect included in a given system is computed as the solution of an optimization problem. Based on membership functions chosen as a linear combination of Schur vectors, this generalized approach includes reversible as well as non-reversible processes.}, language = {en} } @article{RaySunkaraSchuetteetal.2020, author = {Ray, Sourav and Sunkara, Vikram and Sch{\"u}tte, Christof and Weber, Marcus}, title = {How to calculate pH-dependent binding rates for receptor-ligand systems based on thermodynamic simulations with different binding motifs}, volume = {46}, journal = {Molecular Simulation}, number = {18}, publisher = {Taylor and Francis}, doi = {10.1080/08927022.2020.1839660}, pages = {1443 -- 1452}, year = {2020}, abstract = {Molecular simulations of ligand-receptor interactions are a computational challenge, especially when their association- ('on'-rate) and dissociation- ('off'-rate) mechanisms are working on vastly differing timescales. One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)-N-phenyl propionamide (NFEPP) in a μ-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab.}, language = {en} } @misc{WeberDurmazSabrietal.2017, author = {Weber, Marcus and Durmaz, Vedat and Sabri, Peggy and Reidelbach, Marco}, title = {Supplementary simulation data for Science Manuscript ai8636}, doi = {10.12752/5.MWB.1.0}, year = {2017}, abstract = {The simulation data has been produced by Vedat Durmaz, Peggy Sabri and Marco Reidelbach inside the "Computational Molecular Design" Group headed by Marcus Weber at Zuse-Institut Berlin, Takustr. 7, D-14195 Berlin, Germany. The file contains classical simulation data for different fentanyl derivates in the MOR binding pocket at different pHs. It also includes instruction files for quantum-chemical pKa-value estimations and a description of how we derived the pKa-values from the Gaussian09 log-files.}, language = {en} } @misc{Weber2018, author = {Weber, Marcus}, title = {Supplementary: Implications of PCCA+ in Molecular Simulation}, year = {2018}, abstract = {Matlab-software and data sets to recapitulate the presented results in M. Weber: Implications of PCCA+ in Molecular Simulation. Computation, 6(1):20, 2018.}, language = {en} } @article{DjurdjevacConradFuerstenauGrabundzijaetal.2018, author = {Djurdjevac Conrad, Natasa and Fuerstenau, Daniel and Grabundzija, Ana and Helfmann, Luzie and Park, Martin and Schier, Wolfram and Sch{\"u}tt, Brigitta and Sch{\"u}tte, Christof and Weber, Marcus and Wulkow, Niklas and Zonker, Johannes}, title = {Mathematical modeling of the spreading of innovations in the ancient world}, volume = {7}, journal = {eTopoi. Journal for Ancient Studies}, issn = {ISSN 2192-2608}, doi = {10.17171/4-7-1}, year = {2018}, language = {en} } @article{Weber2018, author = {Weber, Marcus}, title = {Implications of PCCA+ in Molecular Simulation}, volume = {6}, journal = {Computation}, number = {1}, doi = {10.3390/computation6010020}, pages = {20}, year = {2018}, abstract = {Upon ligand binding or during chemical reactions the state of a molecular system changes in time. Usually we consider a finite set of (macro-) states of the system (e.g., 'bound' vs. 'unbound'), although the process itself takes place in a continuous space. In this context, the formula chi=XA connects the micro-dynamics of the molecular system to its macro-dynamics. Chi can be understood as a clustering of micro-states of a molecular system into a few macro-states. X is a basis of an invariant subspace of a transfer operator describing the micro-dynamics of the system. The formula claims that there is an unknown linear relation A between these two objects. With the aid of this formula we can understand rebinding effects, the electron flux in pericyclic reactions, and systematic changes of binding rates in kinetic ITC experiments. We can also analyze sequential spectroscopy experiments and rare event systems more easily. This article provides an explanation of the formula and an overview of some of its consequences.}, language = {en} } @article{SchradeTroegerEldashanetal.2018, author = {Schrade, Katharina and Tr{\"o}ger, Jessica and Eldashan, Adeep and Z{\"u}hlke, Kerstin and Abdul Azees, Kamal R. and Elkins, Jonathan M. and Neuenschwander, Martin and Oder, Andreas and Elkewedi, Mohamed and Jaksch, Sarah and Andrae, Karsten and Li, Jinliang and Fernandes, Jaoa and M{\"u}ller, Paul Markus and Grunwald, Stephan and Marino, Stephen F. and Vukicevic, Tanja and Eichhorst, Jenny and Wiesner, Burkhard and Weber, Marcus and Kapiloff, Michael and Rocks, Oliver and Daumke, Oliver and Wieland, Thomas and Knapp, Stefan and von Kries, Jens Peter and Klussmann, Enno}, title = {An AKAP-Lbc-RhoA interaction inhibitor promotes the translocation of aquaporin-2 to the plasma membrane of renal collecting duct principal cells}, volume = {13}, journal = {PLOS ONE}, number = {1}, doi = {10.1371/journal.pone.0191423}, pages = {e0191423 -- e0191423}, year = {2018}, abstract = {Stimulation of renal collecting duct principal cells with antidiuretic hormone (arginine-vasopressin, AVP) results in inhibition of the small GTPase RhoA and the enrichment of the water channel aquaporin-2 (AQP2) in the plasma membrane. The membrane insertion facilitates water reabsorption from primary urine and fine-tuning of body water homeostasis. Rho guanine nucleotide exchange factors (GEFs) interact with RhoA, catalyze the exchange of GDP for GTP and thereby activate the GTPase. However, GEFs involved in the control of AQP2 in renal principal cells are unknown. The A-kinase anchoring protein, AKAP-Lbc, possesses GEF activity, specifically activates RhoA, and is expressed in primary renal inner medullary collecting duct principal (IMCD) cells. Through screening of 18,431 small molecules and synthesis of a focused library around one of the hits, we identified an inhibitor of the interaction of AKAP-Lbc and RhoA. This molecule, Scaff10-8, bound to RhoA, inhibited the AKAP-Lbc-mediated RhoA activation but did not interfere with RhoA activation through other GEFs or activities of other members of the Rho family of small GTPases, Rac1 and Cdc42. Scaff10-8 promoted the redistribution of AQP2 from intracellular vesicles to the periphery of IMCD cells. Thus, our data demonstrate an involvement of AKAP-Lbc-mediated RhoA activation in the control of AQP2 trafficking.}, language = {en} } @article{ChewleEmmerlingWeber2020, author = {Chewle, Surahit and Emmerling, Franziska and Weber, Marcus}, title = {Effect of choice of solvent on crystallization pathway of Paracetamol: An experimental and theoretical case study}, volume = {10}, journal = {Crystals}, number = {12}, doi = {10.3390/cryst10121107}, pages = {1107}, year = {2020}, abstract = {The choice of solvents influences crystalline solid formed during the crystallization of active pharmaceutical ingredients (API). The underlying effects are not always well understood because of the complexity of the systems. Theoretical models are often insufficient to describe this phenomenon. In this study, the crystallization behavior of the model drug paracetamol in different solvents was studied based on experimental and molecular dynamics data. The crystallization process was followed in situ using time-resolved Raman spectroscopy. Molecular dynamics with simulated annealing algorithm was used for an atomistic understanding of the underlying processes. The experimental and theoretical data indicate that paracetamol molecules adopt a particular geometry in a given solvent predefining the crystallization of certain polymorphs.}, language = {en} } @article{HartmannJoesterSchuetteetal.2026, author = {Hartmann, Carsten and J{\"o}ster, Annika and Sch{\"u}tte, Christof and Sikorski, Alexander and Weber, Marcus}, title = {Importance sampling of unbounded random stopping times: computing committor functions and exit rates without reweighting}, arxiv = {http://arxiv.org/abs/2601.01489}, year = {2026}, abstract = {Rare events in molecular dynamics are often related to noise-induced transitions between different macroscopic states (e.g., in protein folding). A common feature of these rare transitions is that they happen on timescales that are on average exponentially long compared to the characteristic timescale of the system, with waiting time distributions that have (sub)exponential tails and infinite support. As a result, sampling such rare events can lead to trajectories that can be become arbitrarily long, with not too low probability, which makes the reweighting of such trajectories a real challenge. Here, we discuss rare event simulation by importance sampling from a variational perspective, with a focus on applications in molecular dynamics, in particular the computation of committor functions. The idea is to design importance sampling schemes that (a) reduce the variance of a rare event estimator while controlling the average length of the trajectories and (b) that do not require the reweighting of possibly very long trajectories. In doing so, we study different stochastic control formulations for committor and mean first exit times, which we compare both from a theoretical and a computational point of view, including numerical studies of some benchmark examples.}, language = {en} } @misc{CordesWeberSchmidtEhrenberg2002, author = {Cordes, Frank and Weber, Marcus and Schmidt-Ehrenberg, Johannes}, title = {Metastable Conformations via successive Perron-Cluster Cluster Analysis of dihedrals}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7074}, number = {02-40}, year = {2002}, abstract = {Decomposition of the high dimensional conformational space of bio-molecules into metastable subsets is used for data reduction of long molecular trajectories in order to facilitate chemical analysis and to improve convergence of simulations within these subsets. The metastability is identified by the Perron-cluster cluster analysis of a Markov process that generates the thermodynamic distribution. A necessary prerequisite of this analysis is the discretization of the conformational space. A combinatorial approach via discretization of each degree of freedom will end in the so called ''curse of dimension''. In the following paper we analyze Hybrid Monte Carlo simulations of small, drug-like biomolecules and focus on the dihedral degrees of freedom as indicators of conformational changes. To avoid the ''curse of dimension'', the projection of the underlying Markov operator on each dihedral is analyzed according to its metastability. In each decomposition step of a recursive procedure, those significant dihedrals, which indicate high metastability, are used for further decomposition. The procedure is introduced as part of a hierarchical protocol of simulations at different temperatures. The convergence of simulations within metastable subsets is used as an ''a posteriori'' criterion for a successful identification of metastability. All results are presented with the visualization program AmiraMol.}, language = {en} } @misc{Weber2003, author = {Weber, Marcus}, title = {Improved Perron Cluster Analysis}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7260}, number = {03-04}, year = {2003}, abstract = {The problem of clustering data can often be transformed into the problem of finding a hidden block diagonal structure in a stochastic matrix. Deuflhard et al. have proposed an algorithm that state s the number \$k\$ of clusters and uses the sign structure of \$k\$ eigenvectors of the stochastic matrix to solve the cluster problem. Recently Weber and Galliat discovered that this system of eigenvectors can easily be transformed into a system of \$k\$ membership functions or soft characteristic functions describing the clusters. In this article we explain the corresponding cluster algorithm and point out the underlying theory. By means of numerical examples we explain how the grade of membership can be interpreted.}, language = {en} } @misc{DeuflhardWeber2003, author = {Deuflhard, Peter and Weber, Marcus}, title = {Robust Perron Cluster Analysis in Conformation Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7415}, number = {03-19}, year = {2003}, abstract = {The key to molecular conformation dynamics is the direct identification of metastable conformations, which are almost invariant sets of molecular dynamical systems. Once some reversible Markov operator has been discretized, a generalized symmetric stochastic matrix arises. This matrix can be treated by Perron cluster analysis, a rather recent method involving a Perron cluster eigenproblem. The paper presents an improved Perron cluster analysis algorithm, which is more robust than earlier suggestions. Numerical examples are included.}, language = {en} } @misc{WeberMeyer2005, author = {Weber, Marcus and Meyer, Holger}, title = {ZIBgridfree - Adaptive Conformation Analysis with qualified Support of Transition States and Thermodynamic Weights}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8514}, number = {05-17}, year = {2005}, abstract = {This paper introduces a new algorithm of conformational analysis based on mesh-free methods as described in [M. Weber. Mehless methods in Conformation Dynamics.(2005)]. The adaptive decomposition of the conformational space by softly limiting functions avoids trapping effects and allows adaptive refinement strategies. These properties of the algorithm makes ZIBgridfree particularly suitable for the complete exploration of high-dimensional conformational space. The adaptive control of the algorithm benefits from the tight integration of molecular simulation and conformational analysis. An emphasized part of the analysis is the Robust Perron Cluster Analysis (PCCA+) based on the work of Peter Deuflhard and Marcus Weber. PCCA+ supports an almost-characteristic cluster definition with an outstanding mapping of transition states. The outcome is expressed by the metastable sets of conformations, their thermodynamic weights and flexibility.}, language = {en} } @article{AbendrothBujotzekShanetal.2011, author = {Abendroth, Frank and Bujotzek, Alexander and Shan, Min and Haag, Rainer and Weber, Marcus and Seitz, Oliver}, title = {DNA-controlled bivalent presentation of ligands for the estrogen receptor}, journal = {Angew. Chem. Int. Ed.}, year = {2011}, language = {en} } @article{BujotzekShanHaagetal.2011, author = {Bujotzek, Alexander and Shan, Min and Haag, Rainer and Weber, Marcus}, title = {Towards a rational spacer design for bivalent inhibition of estrogen receptor}, volume = {25(3)}, journal = {J. Comput.-Aided Mol. Des.}, pages = {253 -- 262}, year = {2011}, language = {en} }