@inproceedings{PoethkeGoubergritsKertzscheretal.2008, author = {Poethke, Jens and Goubergrits, Leonid and Kertzscher, Ulrich and Spuler, Andreas and Petz, Christoph and Hege, Hans-Christian}, title = {Impact of imaging modality for analysis of a cerebral aneurysm: Comparison between CT, MRI and 3DRA}, series = {Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering}, booktitle = {Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering}, editor = {Jos Vander Sloten, Pascal and Haueisen, Jens}, publisher = {Springer-Verlag}, address = {Antwerp, Belgium}, doi = {10.1007/978-3-540-89208-3}, pages = {1889 -- 1893}, year = {2008}, language = {en} } @inproceedings{PetzStallingGoubergritsetal.2004, author = {Petz, Christoph and Stalling, Detlev and Goubergrits, Leonid and Affeld, Klaus and Spuler, Andreas}, title = {Validierung von Str{\"o}mungssimulationen in kardiovaskul{\"a}ren Anwendungen}, series = {Bildverabeitung f{\"u}r die Medizin 2004}, booktitle = {Bildverabeitung f{\"u}r die Medizin 2004}, editor = {Tolxdorff, Thomas}, pages = {356 -- 360}, year = {2004}, language = {en} } @article{GoubergritsWeberPetzetal.2009, author = {Goubergrits, Leonid and Weber, Sarah and Petz, Christoph and Spuler, Andreas and P{\"o}thke, Jens and Berthe, Andr{\´e} and Hege, Hans-Christian}, title = {Wall-PIV as a Near Wall Flow Validation Tool for CFD}, series = {Journal of Visualization}, volume = {12}, journal = {Journal of Visualization}, number = {3}, pages = {241 -- 250}, year = {2009}, language = {en} } @article{GoubergritsThamsenBertheetal.2010, author = {Goubergrits, Leonid and Thamsen, Bente and Berthe, Andr{\´e} and Poethke, Jens and Kertzscher, Ulrich and Affeld, Klaus and Petz, Christoph and Hege, Hans-Christian and Hoch, Heinrich and Spuler, Andreas}, title = {In Vitro Study of Near-Wall Flow in a Cerebral Aneurysm Model with and without Coils}, series = {American Journal of Neuroradiology}, volume = {31:8}, journal = {American Journal of Neuroradiology}, doi = {10.3174/ajnr.A2121}, pages = {1521 -- 1528}, year = {2010}, language = {en} } @article{GoubergritsSpulerSchalleretal.2014, author = {Goubergrits, Leonid and Spuler, Andreas and Schaller, Jens and Wiegmann, Nils and Berthe, Andre and Hege, Hans-Christian and Affeld, Klaus and Kertzscher, Ulrich}, title = {In vitro study of hemodynamic treatment improvement: Hunterian ligation of a fenestrated basilar artery aneurysm after coiling}, series = {The International Journal of Artificial Organs}, volume = {37}, journal = {The International Journal of Artificial Organs}, number = {4}, doi = {10.5301/ijao.5000314}, pages = {325 -- 335}, year = {2014}, abstract = {Hunterian ligation affecting hemodynamics in vessels was proposed to avoid rebleeding in a case of a fenestrated basilar artery aneurysm after incomplete coil occlusion. We studied the hemodynamics in vitro to predict the hemodynamic changes near the aneurysm remnant caused by Hunterian ligation. A transparent model was fabricated based on three-dimensional rotational angiography imaging. Arteries were segmented and reconstructed. Pulsatile flow in the artery segments near the partially occluded (coiled) aneurysm was investigated by means of particle image velocimetry. The hemodynamic situation was investigated before and after Hunterian ligation of either the left or the right vertebral artery (LVA/RVA). Since post-ligation flow rate in the basilar artery was unknown, reduced and retained flow rates were simulated for both ligation options. Flow in the RVA and in the corresponding fenestra vessel is characterized by a vortex at the vertebrobasilar junction, whereas the LVA exhibits undisturbed laminar flow. Both options (RVA or LVA ligation) cause a significant flow reduction near the aneurysm remnant with a retained flow rate. The impact of RVA ligation is, however, significantly higher. This in vitro case study shows that flow reduction near the aneurysm remnant can be achieved by Hunterian ligation and that this effect depends largely on the selection of the ligated vessel. Thus the ability of the proposed in vitro pipe-line to improve hemodynamic impact of the proposed therapy was successfully proved.}, language = {en} } @article{GoubergritsSchallerKertzscheretal.2012, author = {Goubergrits, Leonid and Schaller, Jens and Kertzscher, Ulrich and van den Bruck, Nils and P{\"o}thkow, Kai and Petz, Christoph and Hege, Hans-Christian and Spuler, Andreas}, title = {Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms}, series = {J. R. Soc. Interface}, volume = {9}, journal = {J. R. Soc. Interface}, number = {69}, doi = {10.1098/rsif.2011.0490}, pages = {677 -- 688}, year = {2012}, language = {en} } @article{GoubergritsSchallerKertzscheretal., author = {Goubergrits, Leonid and Schaller, Jens and Kertzscher, Ulrich and Petz, Christoph and Hege, Hans-Christian and Spuler, Andreas}, title = {Reproducibility of Image-Based Analysis of Cerebral Aneurysm Geometry and Hemodynamics: An In-Vitro Study of Magnetic Resonance Imaging, Computed Tomography, and Three-Dimensional Rotational Angiography}, series = {Journal of Neurological Surgery, Part A: Central European Neurosurgery}, volume = {74}, journal = {Journal of Neurological Surgery, Part A: Central European Neurosurgery}, number = {5}, doi = {10.1055/s-0033-1342937}, pages = {294 -- 302}, language = {en} } @inproceedings{GoubergritsPoethkePetzetal.2008, author = {Goubergrits, Leonid and P{\"o}thke, Jens and Petz, Christoph and Hege, Hans-Christian and Spuler, Andreas and Kertzscher, Ulrich}, title = {3D Bildgebung von zerebralen Aneurysmen}, series = {Bildverarbeitung f{\"u}r die Medizin}, booktitle = {Bildverarbeitung f{\"u}r die Medizin}, doi = {10.1007/978-3-540-78640-5_31}, pages = {153 -- 157}, year = {2008}, language = {en} } @article{GoubergritsHellmeierBrueningetal., author = {Goubergrits, Leonid and Hellmeier, Florian and Bruening, Jan Joris and Spuler, Andreas and Hege, Hans-Christian and Voss, Samuel and Janiga, G{\´a}bor and Saalfeld, Sylvia and Beuing, Oliver and Berg, Philipp}, title = {Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): Uncertainty Quantification of Geometric Rupture Risk Parameters}, series = {BioMedical Engineering OnLine}, volume = {18}, journal = {BioMedical Engineering OnLine}, number = {35}, doi = {10.1186/s12938-019-0657-y}, abstract = {Background Geometric parameters have been proposed for prediction of cerebral aneurysm rupture risk. Predicting the rupture risk for incidentally detected unruptured aneurysms could help clinicians in their treatment decision. However, assessment of geometric parameters depends on several factors, including the spatial resolution of the imaging modality used and the chosen reconstruction procedure. The aim of this study was to investigate the uncertainty of a variety of previously proposed geometric parameters for rupture risk assessment, caused by variability of reconstruction procedures. Materials 26 research groups provided segmentations and surface reconstructions of five cerebral aneurysms as part of the Multiple Aneurysms AnaTomy CHallenge (MATCH) 2018. 40 dimensional and non-dimensional geometric parameters, describing aneurysm size, neck size, and irregularity of aneurysm shape, were computed. The medians as well as the absolute and relative uncertainties of the parameters were calculated. Additionally, linear regression analysis was performed on the absolute uncertainties and the median parameter values. Results A large variability of relative uncertainties in the range between 3.9 and 179.8\% was found. Linear regression analysis indicates that some parameters capture similar geometric aspects. The lowest uncertainties < 6\% were found for the non-dimensional parameters isoperimetric ratio, convexity ratio, and ellipticity index. Uncertainty of 2D and 3D size parameters was significantly higher than uncertainty of 1D parameters. The most extreme uncertainties > 80\% were found for some curvature parameters. Conclusions Uncertainty analysis is essential on the road to clinical translation and use of rupture risk prediction models. Uncertainty quantification of geometric rupture risk parameters provided by this study may help support development of future rupture risk prediction models.}, language = {en} }