@misc{DeuflhardHegeSeebass, author = {Deuflhard, Peter and Hege, Hans-Christian and Seebass, Martin}, title = {Progress Towards a Combined MRI/Hyperthermia System}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5755}, number = {00-07}, abstract = {Regional hyperthermia, a clinical cancer therapy, is the main topic of the Sonderforschungsbereich Hyperthermia: Scientific Methods and Clinical Applications'' at Berlin. In recent years, technological improvements towards a better concentration of heat to the desired target region have been achieved. These include a rather sophisticated integrated software environment for therapy planning and a new hyperthermia applicator. In a next step, a detailed closed loop monitoring of the actual treatment is to be developed. For this purpose the hyperthermia applicator is combined with an MRI system, which will allow to check the positioning of the patients and to measure individual blood perfusion as well as the 3D temperature distribution. The measurements will then be employed for an on-line control of the whole treatment. In this intended setting, new fast feedback control algorithms will come into play.}, language = {en} } @misc{DeuflhardLouisSchlegeletal., author = {Deuflhard, Peter and Louis, Alfred and Schlegel, W. and Seebass, Martin}, title = {Workshop "Scientific Computing in der Medizin" SCMED '97}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5474}, number = {TR-97-05}, abstract = {Die Arbeitstagung \glqq Scientific Computing in der Medizin\grqq , kurz SCMED \grq 97, findet vom 22. - 23. September 1997 im neu errichteten Geb{\"a}ude des Konrad-Zuse-Zentrums auf dem Dahlemer naturwissenschaftlichen Campus der Freien Universt{\"a}t Berlin statt.}, language = {en} } @misc{SeebassBeckGellermannetal., author = {Seebass, Martin and Beck, Rudolf and Gellermann, Johanna and Nadobny, Jacek and Wust, Peter}, title = {Electromagnetic phased arrays for regional hyperthermia -- optimal frequency and antenna arrangement}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5961}, number = {00-28}, abstract = {In this paper we investigate the effects of the three-dimensional arrangement of antennas and frequency on temperature distributions that can be achieved in regional hyperthermia using an electromagnetic phased array. We compare the results of power-based and temperature-based optimization. Thus we are able to explain the discrepancies between previous studies favouring more antenna rings on the one hand and more antennas per ring on the other hand. We analyze the sensitivity of the results with respect to changes in amplitudes and phases as well as patient position. This analysis can be used for different purposes. First, it provides additional criteria for selecting the optimal frequency. Second, it can be used for specifying the required phase and amplitude accuracy for a real phased array system. Furthermore, it may serve as a basis for technological developments in order to reduce both types of sensitivities described above.}, language = {en} } @misc{ErdmannLangSeebass, author = {Erdmann, Bodo and Lang, Jens and Seebass, Martin}, title = {Adaptive Solutions of Nonlinear Parabolic Equations with Application to Hyperthermia Treatments}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3130}, number = {SC-97-44}, abstract = {We present a self-adaptive finite element method to solve nonlinear evolution problems in 3D. An implicit time integrator of Rosenbrock type is coupled with a multilevel approach in space. The proposed method is applied to hyperthermia treatments to demonstrate its potential for the solving of complicated problems.}, language = {en} } @misc{HegeSeebassStallingetal., author = {Hege, Hans-Christian and Seebass, Martin and Stalling, Detlev and Z{\"o}ckler, Malte}, title = {A Generalized Marching Cubes Algorithm Based on Non-Binary Classifications}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2741}, number = {SC-97-05}, abstract = {We present a new technique for generating surface meshes from a uniform set of discrete samples. Our method extends the well-known marching cubes algorithm used for computing polygonal isosurfaces. While in marching cubes each vertex of a cubic grid cell is binary classified as lying above or below an isosurface, in our approach an arbitrary number of vertex classes can be specified. Consequently the resulting surfaces consist of patches separating volumes of two different classes each. Similar to the marching cubes algorithm all grid cells are traversed and classified according to the number of different vertex classes involved and their arrangement. The solution for each configuration is computed based on a model that assigns probabilities to the vertices and interpolates them. We introduce an automatic method to find a triangulation which approximates the boundary surfaces - implicitly given by our model - in a topological correct way. Look-up tables guarantee a high performance of the algorithm. In medical applications our method can be used to extract surfaces from a 3D segmentation of tomographic images into multiple tissue types. The resulting surfaces are well suited for subsequent volumetric mesh generation, which is needed for simulation as well as visualization tasks. The proposed algorithm provides a robust and unique solution, avoiding ambiguities occuring in other methods. The method is of great significance in modeling and animation too, where it can be used for polygonalization of non-manifold implicit surfaces.}, language = {en} } @misc{DeuflhardSeebass, author = {Deuflhard, Peter and Seebass, Martin}, title = {Adaptive Multilevel FEM as Decisive Tools in the Clinical Cancer Therapy Hyperthermia}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3739}, number = {SC-98-30}, abstract = {The paper surveys recent progress in a joint mathematical-medical project on cancer therapy planning. Within so-called regional hyperthermia the computational task is to tune a set of coupled radiofrequency antennas such that a carefully measured tumor is locally heated, but any outside hot spots are avoided. A mathematical model of the whole clinical system -- air, applicator with antennas, water bolus, individual patient body -- involves Maxwell's equations in inhomogeneous media and a parabolic bioheat transfer equation, which represents a simplified model of heat transfer in the human body (ignoring strong blood vessel heat transport). Both PDEs need to be computed fast and to medical reliability (!) on a workstation within a clinical environment. This requirement triggered a series of new algorithmic developments to be reported here, among which is an adaptive multilevel FEM for Maxwell's equations, which dominates the numerical simulation time. In total, however, the main bulk of computation time (see Table 3 in Section 4 below) still goes into segmentation -- a necessary preprocessing step in the construction a 3D virtual patient from the input of a stack of 2D computed tomograms (left out here).}, language = {en} } @misc{DeuflhardWeiserSeebass, author = {Deuflhard, Peter and Weiser, Martin and Seebass, Martin}, title = {A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3785}, number = {SC-98-35}, abstract = {In the clinical cancer therapy of regional hyperthermia nonlinear perfusion effects inside and outside the tumor seem to play a not negligible role. A stationary model of such effects leads to a nonlinear Helmholtz term within an elliptic boundary value problem. The present paper reports about the application of a recently designed adaptive multilevel FEM to this problem. For several 3D virtual patients, nonlinear versus linear model is studied. Moreover, the numerical efficiency of the new algorithm is compared with a former application of an adaptive FEM to the corresponding instationary model PDE.}, language = {en} } @misc{SeebassSullivanWustetal., author = {Seebass, Martin and Sullivan, Dennis and Wust, Peter and Deuflhard, Peter and Felix, Roland}, title = {The Berlin Extension of the Stanford Hyperthermia Treatment.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1304}, number = {SC-93-35}, abstract = {In the field of deep regional hyperthermia, one of the most widely used devices is the BSD--2000 Hyperthermia System which employs the Sigma 60 applicator. The Sigma 60 consists of four independent sources, giving it the potential to control the energy pattern within the patient. The independent amplitudes and phases, as well as frequency selection and applicator position, present a large number of parameters for the operator to determine. Computer simulation has long been recognized as an attractive approach to optimizing these parameters. A treatment planning program was used in clinical practice at Stanford University Medical Center for two years. It demonstrated the feasibility of computer simulation for deep regional hyperthermia in a clinical situation. However, several parts of this system were written in a language specific to one workstation, which severely restricted the wider distribution of the program to other users of the Sigma 60. A new treatment planning system for the BSD 2000 has been developed and put into clinical practice at the Rudolf Virchow Clinic of the Free University of Berlin. The new method, which we will refer to as the Berlin system, has a simpler model construction program and a considerably better graphics capability. However, the most important feature is that all programs are written in FORTRAN, C, or the X Window graphics system. Therefore, the entire treatment planning system is completely portable to other workstations.}, language = {en} } @misc{BeckDeuflhardHegeetal., author = {Beck, Rudolf and Deuflhard, Peter and Hege, Hans-Christian and Seebass, Martin and Stalling, Detlev}, title = {Numerical Algorithms and Visualization in Medical Treament Planning}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2643}, number = {SC-96-54}, abstract = {After a short summary on therapy planning and the underlying technologies we discuss quantitative medicine by giving a short overview on medical image data, summarizing some applications of computer based treatment planning, and outlining requirements on medical planning systems. Then we continue with a description of our medical planning system {\sf HyperPlan}. It supports typical working steps in therapy planning, like data aquisition, segmentation, grid generation, numerical simulation and optimization, accompanying these with powerful visualization and interaction techniques.}, language = {en} } @misc{DeuflhardSeebassStallingetal., author = {Deuflhard, Peter and Seebass, Martin and Stalling, Detlev and Beck, Rudolf and Hege, Hans-Christian}, title = {Hyperthermia Treatment Planning in Clinical Cancer Therapy: Modelling, Simulation and Visualization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2958}, number = {SC-97-26}, abstract = {\noindent The speaker and his co-workers in Scientific Computing and Visualization have established a close cooperation with medical doctors at the Rudolf--Virchow--Klinikum of the Humboldt University in Berlin on the topic of regional hyperthermia. In order to permit a patient--specific treatment planning, a special software system ({\sf\small HyperPlan}) has been developed. \noindent A mathematical model of the clinical system ({\it radio frequency applicator with 8 antennas, water bolus, individual patient body}) involves Maxwell's equations in inhomogeneous media and a so--called bio--heat transfer PDE describing the temperature distribution in the human body. The electromagnetic field and the thermal phenomena need to be computed at a speed suitable for the clinical environment. An individual geometric patient model is generated as a quite complicated tetrahedral ``coarse'' grid (several thousands of nodes). Both Maxwell's equations and the bio--heat transfer equation are solved on that 3D--grid by means of {\em adaptive} multilevel finite element methods, which automatically refine the grid where necessary in view of the required accuracy. Finally optimal antenna parameters for the applicator are determined . \noindent All steps of the planning process are supported by powerful visualization methods. Medical images, contours, grids, simulated electromagnetic fields and temperature distributions can be displayed in combination. A number of new algorithms and techniques had to be developed and implemented. Special emphasis has been put on advanced 3D interaction methods and user interface issues.}, language = {en} } @misc{LangErdmannSeebass, author = {Lang, Jens and Erdmann, Bodo and Seebass, Martin}, title = {Impact of Nonlinear Heat Transfer on Temperature Control in Regional Hyperthermia}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3426}, number = {SC-97-73}, abstract = {We describe an optimization process specially designed for regional hyperthermia of deep seated tumors in order to achieve desired steady--state temperature distributions. A nonlinear three--dimensional heat transfer model based on temperature--dependent blood perfusion is applied to predict the temperature. Using linearly implicit methods in time and adaptive multilevel finite elements in space, we are able to integrate efficiently the instationary nonlinear heat equation with high accuracy. Optimal heating is obtained by minimizing an integral object function which measures the distance between desired and model predicted temperatures. A sequence of minima is calculated from successively improved constant--rate perfusion models employing a damped Newton method in an inner iteration. We compare temperature distributions for two individual patients calculated on coarse and fine spatial grids and present numerical results of optimizations for a Sigma 60 Applicator of the BSD 2000 Hyperthermia System.}, language = {en} } @misc{ErdmannLangSeebass, author = {Erdmann, Bodo and Lang, Jens and Seebass, Martin}, title = {Optimization of Temperature Distributions for Regional Hyperthermia Based on a Nonlinear Heat Transfer Model}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3283}, number = {SC-97-59}, abstract = {We describe an optimization process specially designed for regional hyperthermia of deap seated tumors in order to achieve desired steady--state temperature distributions. A nonlinear three--dimensional heat--transfer model based on temperature--dependent blood perfusion is applied to predict the temperature. Optimal heating is obtained by minimizing an integral object function which measures the distance between desired and model predicted temperatures. Sequential minima are calculated from successively improved constant--rate perfusion models employing a damped Newton method in an inner iteration. Numerical results for a Sigma 60 applicator are presented. This work has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Sonderforschungsbereich 273 \glqq Hyperthermie: Methodik und Klinik \grqq .}, language = {en} } @misc{StallingSeebassZachow, author = {Stalling, Detlev and Seebass, Martin and Zachow, Stefan}, title = {Mehrschichtige Oberfl{\"a}chenmodelle zur computergest{\"u}tzten Planung in der Chirurgie}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5661}, number = {TR-98-05}, abstract = {Polygonale Sch{\"a}delmodelle bilden ein wichtiges Hilfsmittel f{\"u}r computergest{\"u}tzte Planungen im Bereich der plastischen Chirurgie. Wir beschreiben, wie derartige Modelle automatisch aus hochaufgel{\"o}sten CT-Datens{\"a}tzen erzeugt werden k{\"o}nnen. Durch einen lokal steuerbaren Simplifizierungsalgorithmus werden die Modelle so weit vereinfacht, daß auch auf kleineren Graphikcomputern interaktives Arbeiten m{\"o}glich wird. Die Verwendung eines speziellen Transparenzmodells erm{\"o}glicht den ungehinderten Blick auf die bei der Planung relevanten Knochenstrukturen und l{\"a}ßt den Benutzer zugleich die Kopfumrisse des Patienten erkennen.}, language = {de} } @misc{LameckerLangeSeebass, author = {Lamecker, Hans and Lange, Thomas and Seebass, Martin}, title = {Segmentation of the Liver using a 3D Statistical Shape Model}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7847}, number = {04-09}, abstract = {This paper presents an automatic approach for segmentation of the liver from computer tomography (CT) images based on a 3D statistical shape model. Segmentation of the liver is an important prerequisite in liver surgery planning. One of the major challenges in building a 3D shape model from a training set of segmented instances of an object is the determination of the correspondence between different surfaces. We propose to use a geometric approach that is based on minimizing the distortion of the correspondence mapping between two different surfaces. For the adaption of the shape model to the image data a profile model based on the grey value appearance of the liver and its surrounding tissues in contrast enhanced CT data was developed. The robustness of this method results from a previous nonlinear diffusion filtering of the image data. Special focus is turned to the quantitative evaluation of the segmentation process. Several different error measures are discussed and implemented in a study involving more than 30 livers.}, language = {en} } @misc{StallingSeebassZoeckleretal., author = {Stalling, Detlev and Seebass, Martin and Z{\"o}ckler, Malte and Hege, Hans-Christian}, title = {Hyperthermia Treatment Planning with HyperPlan - User's Manual}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5957}, number = {00-27}, abstract = {HyperPlan is a software system for performing 3D-simulations and treatment planning in regional hyperthermia. It allows the user to understand the complex effects of electromagnetic wave propagation and heat transport inside a patient's body. Optimized power amplitudes and phase settings can be calculated for the BSD radiowave applicators Sigma 60 and Sigma 2000 (eye-applicator). HyperPlan is built on top of the modular, object-oriented visualization system Amira. This system already contains powerful algorithms for image processing, geometric modelling and 3D graphics display. HyperPlan provides a number of hyperthermia-specific modules, allowing the user to create 3D tetrahedral patient models suitable for treatment planning. In addition, all numerical simulation modules required for hyperthermia simulation are part of HyperPlan. This guide provides a step-by-step introduction to hyperthermia planning using HyperPlan. It also describes the usage of the underlying visualization system Amira.}, language = {en} }