@inproceedings{BeckHegeSeebassetal.1996, author = {Beck, Rudolf and Hege, Hans-Christian and Seebass, Martin and Wust, Peter and Deuflhard, Peter and Felix, Roland}, title = {Adaptive finite element codes for numerical calculations in hyperthermia treatment planning}, series = {Proc. of the 7th Int. Congress on Hyperthermic Oncology, Rome, Italy, April 1996}, volume = {2}, booktitle = {Proc. of the 7th Int. Congress on Hyperthermic Oncology, Rome, Italy, April 1996}, editor = {Franconi, Cafiero}, pages = {515 -- 517}, year = {1996}, language = {en} } @inproceedings{BeckHegeSeebassetal.1996, author = {Beck, Rudolf and Hege, Hans-Christian and Seebaß, Martin and Wust, Peter and Deuflhard, Peter and Felix, Roland}, title = {Adaptive Finite Element Codes for Numerical Calculations in Hyperthermia Treatment Planning}, series = {Proceedings of the 17th Congress on Hyperthermic Oncology}, volume = {2}, booktitle = {Proceedings of the 17th Congress on Hyperthermic Oncology}, address = {Rome, Italy}, pages = {515 -- 517}, year = {1996}, language = {en} } @article{GellermannWustStallingetal.2000, author = {Gellermann, Johanna and Wust, Peter and Stalling, Detlev and Seebass, Martin and Nadobny, Johanna and Beck, Rudolf and Hege, Hans-Christian and Deuflhard, Peter and Felix, Roland}, title = {Clinical evaluation and verification of the hyperthermia treatment planning system hyperplan}, series = {Int J Radiat Oncol Biol Phys}, volume = {47}, journal = {Int J Radiat Oncol Biol Phys}, number = {4}, pages = {1145 -- 1156}, year = {2000}, language = {en} } @article{WustBeckBergeretal.2000, author = {Wust, Peter and Beck, Rudolf and Berger, J{\"o}rn and F{\"a}hling, Horst and Seebaß, Martin and Wlodarczyk, Waldemar and Hoffmann, Werner and Nadobny, Jacek}, title = {Electric Field Distributions in a Phased-Array Applicator with 12 Channels - Measurements and Numerical Simulations}, series = {Medical Physics}, volume = {27}, journal = {Medical Physics}, pages = {2565 -- 2579}, year = {2000}, language = {en} } @article{SeebassBeckGellermannetal.2000, author = {Seebaß, Martin and Beck, Rudolf and Gellermann, Johanna and Nadobny, Jacek and Wust, Peter}, title = {Electromagnetic Phased Arrays for Regional Hyperthermia - Optimal Frequency and Antenna Arrangement}, series = {Int. J. Hyperthermia}, volume = {17(4)}, journal = {Int. J. Hyperthermia}, pages = {321 -- 326}, year = {2000}, language = {en} } @misc{SeebassBeckGellermannetal., author = {Seebass, Martin and Beck, Rudolf and Gellermann, Johanna and Nadobny, Jacek and Wust, Peter}, title = {Electromagnetic phased arrays for regional hyperthermia -- optimal frequency and antenna arrangement}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5961}, number = {00-28}, abstract = {In this paper we investigate the effects of the three-dimensional arrangement of antennas and frequency on temperature distributions that can be achieved in regional hyperthermia using an electromagnetic phased array. We compare the results of power-based and temperature-based optimization. Thus we are able to explain the discrepancies between previous studies favouring more antenna rings on the one hand and more antennas per ring on the other hand. We analyze the sensitivity of the results with respect to changes in amplitudes and phases as well as patient position. This analysis can be used for different purposes. First, it provides additional criteria for selecting the optimal frequency. Second, it can be used for specifying the required phase and amplitude accuracy for a real phased array system. Furthermore, it may serve as a basis for technological developments in order to reduce both types of sensitivities described above.}, language = {en} } @misc{DeuflhardSeebassStallingetal., author = {Deuflhard, Peter and Seebass, Martin and Stalling, Detlev and Beck, Rudolf and Hege, Hans-Christian}, title = {Hyperthermia Treatment Planning in Clinical Cancer Therapy: Modelling, Simulation and Visualization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2958}, number = {SC-97-26}, abstract = {\noindent The speaker and his co-workers in Scientific Computing and Visualization have established a close cooperation with medical doctors at the Rudolf--Virchow--Klinikum of the Humboldt University in Berlin on the topic of regional hyperthermia. In order to permit a patient--specific treatment planning, a special software system ({\sf\small HyperPlan}) has been developed. \noindent A mathematical model of the clinical system ({\it radio frequency applicator with 8 antennas, water bolus, individual patient body}) involves Maxwell's equations in inhomogeneous media and a so--called bio--heat transfer PDE describing the temperature distribution in the human body. The electromagnetic field and the thermal phenomena need to be computed at a speed suitable for the clinical environment. An individual geometric patient model is generated as a quite complicated tetrahedral ``coarse'' grid (several thousands of nodes). Both Maxwell's equations and the bio--heat transfer equation are solved on that 3D--grid by means of {\em adaptive} multilevel finite element methods, which automatically refine the grid where necessary in view of the required accuracy. Finally optimal antenna parameters for the applicator are determined . \noindent All steps of the planning process are supported by powerful visualization methods. Medical images, contours, grids, simulated electromagnetic fields and temperature distributions can be displayed in combination. A number of new algorithms and techniques had to be developed and implemented. Special emphasis has been put on advanced 3D interaction methods and user interface issues.}, language = {en} } @inproceedings{DeuflhardSeebassStallingetal.1997, author = {Deuflhard, Peter and Seebass, Martin and Stalling, Detlev and Beck, Rudolf and Hege, Hans-Christian}, title = {Hyperthermia Treatment Planning in Clinical Cancer Therapy:Modelling, Simulation, and Visualization}, series = {Computational Physics, Chemistry and Biology}, volume = {3}, booktitle = {Computational Physics, Chemistry and Biology}, editor = {Sydow, Achim}, publisher = {Wissenschaft und Technik Verlag}, address = {Plenary keynote talk, 15th IMACS World Congress 1997 on Scientific Computation, Modelling and Applied Mathematics}, year = {1997}, language = {en} } @inproceedings{DeuflhardSeebassStallingetal.1997, author = {Deuflhard, Peter and Seebaß, Martin and Stalling, Detlev and Beck, Rudolf and Hege, Hans-Christian}, title = {Hyperthermia Treatment Planning in Clinical Therapy}, series = {Computational Physics, Chemistry and Biology (Proceedings of the 15th IMACS World Congress 1997 on Scientific Computation 3, Modelling and Applied Mathematics)}, booktitle = {Computational Physics, Chemistry and Biology (Proceedings of the 15th IMACS World Congress 1997 on Scientific Computation 3, Modelling and Applied Mathematics)}, editor = {Sydow, Achim}, publisher = {Wissenschaft und Technik Verlag}, pages = {9 -- 17}, year = {1997}, language = {en} } @misc{BeckDeuflhardHegeetal., author = {Beck, Rudolf and Deuflhard, Peter and Hege, Hans-Christian and Seebass, Martin and Stalling, Detlev}, title = {Numerical Algorithms and Visualization in Medical Treament Planning}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2643}, number = {SC-96-54}, abstract = {After a short summary on therapy planning and the underlying technologies we discuss quantitative medicine by giving a short overview on medical image data, summarizing some applications of computer based treatment planning, and outlining requirements on medical planning systems. Then we continue with a description of our medical planning system {\sf HyperPlan}. It supports typical working steps in therapy planning, like data aquisition, segmentation, grid generation, numerical simulation and optimization, accompanying these with powerful visualization and interaction techniques.}, language = {en} }