@misc{SerranoSchwarzGleixner2019, author = {Serrano, Felipe and Schwarz, Robert and Gleixner, Ambros}, title = {On the Relation between the Extended Supporting Hyperplane Algorithm and Kelley's Cutting Plane Algorithm}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73253}, year = {2019}, abstract = {Recently, Kronqvist et al. (2016) rediscovered the supporting hyperplane algorithm of Veinott (1967) and demonstrated its computational benefits for solving convex mixed-integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley's cutting plane algorithm applied to a particular reformulation of the problem. As a result, we extend the applicability of the supporting hyperplane algorithm to convex problems represented by general, not necessarily convex, differentiable functions that satisfy a mild condition.}, language = {en} } @article{SerranoSchwarzGleixner2020, author = {Serrano, Felipe and Schwarz, Robert and Gleixner, Ambros}, title = {On the relation between the extended supporting hyperplane algorithm and Kelley's cutting plane algorithm}, volume = {78}, journal = {Journal of Global Optimization}, doi = {10.1007/s10898-020-00906-y}, pages = {161 -- 179}, year = {2020}, abstract = {Recently, Kronqvist et al. (J Global Optim 64(2):249-272, 2016) rediscovered the supporting hyperplane algorithm of Veinott (Oper Res 15(1):147-152, 1967) and demonstrated its computational benefits for solving convex mixed integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley's cutting plane algorithm (J Soc Ind Appl Math 8(4):703-712, 1960) applied to a particular reformulation of the problem. As a result, we extend the applicability of the supporting hyperplane algorithm to convex problems represented by a class of general, not necessarily convex nor differentiable, functions.}, language = {en} } @misc{FuegenschuhHillerHumpolaetal.2011, author = {F{\"u}genschuh, Armin and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Schwarz, Robert and Schweiger, Jonas and Szab{\´o}, J{\´a}cint}, title = {Gas Network Topology Optimization for Upcoming Market Requirements}, doi = {10.1109/EEM.2011.5953035}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12348}, number = {11-09}, year = {2011}, abstract = {Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed.}, language = {en} } @article{PfetschFuegenschuhGeissleretal.2014, author = {Pfetsch, Marc and F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Geißler, Nina and Gollmer, Ralf and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Morsi, Antonio and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Vigerske, Stefan and Willert, Bernhard}, title = {Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions}, journal = {Optimization Methods and Software}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2014.888426}, year = {2014}, abstract = {In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.}, language = {en} } @inproceedings{FuegenschuhHillerHumpolaetal.2011, author = {F{\"u}genschuh, Armin and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Schwarz, Robert and Schweiger, Jonas and Szabo, Jacint}, title = {Gas Network Topology Optimization for Upcoming Market Requirements}, booktitle = {International Conference on the European Energy Market (EEM)}, doi = {10.1109/EEM.2011.5953035}, pages = {346 -- 351}, year = {2011}, abstract = {Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed.}, language = {en} } @article{FuegenschuhGeisslerGollmeretal.2013, author = {F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Gollmer, Ralf and Hayn, Christine and Henrion, Ren{\´e} and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Mirkov, Radoslava and Morsi, Antonio and R{\"o}misch, Werner and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Willert, Bernhard}, title = {Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets}, volume = {5}, journal = {Energy Systems}, number = {3}, publisher = {Springer Berlin Heidelberg}, address = {Berlin}, doi = {10.1007/s12667-013-0099-8}, pages = {449 -- 473}, year = {2013}, abstract = {The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network's capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations.}, language = {en} } @misc{MaherFischerGallyetal.2017, author = {Maher, Stephen J. and Fischer, Tobias and Gally, Tristan and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Robert Lion and Hendel, Gregor and Koch, Thorsten and L{\"u}bbecke, Marco and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schenker, Sebastian and Schwarz, Robert and Serrano, Felipe and Shinano, Yuji and Weninger, Dieter and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 4.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62170}, year = {2017}, abstract = {The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences.}, language = {en} } @article{HumpolaJoormannOucherifetal.2015, author = {Humpola, Jesco and Joormann, Imke and Oucherif, Djamal and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schwarz, Robert}, title = {GasLib - A Library of Gas Network Instances}, journal = {Optimization Online}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57950}, year = {2015}, abstract = {The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances that can be used by researchers in the field of gas transport. The advantages are that researchers save time by using these instances and that different models and algorithms can be compared on the same specified test sets. The library instances are encoded in an XML format. In this paper, we explain this format and present the instances that are available in the library.}, language = {en} } @misc{GamrathFischerGallyetal.2016, author = {Gamrath, Gerald and Fischer, Tobias and Gally, Tristan and Gleixner, Ambros and Hendel, Gregor and Koch, Thorsten and Maher, Stephen J. and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schenker, Sebastian and Schwarz, Robert and Serrano, Felipe and Shinano, Yuji and Vigerske, Stefan and Weninger, Dieter and Winkler, Michael and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 3.2}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57675}, year = {2016}, abstract = {The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.}, language = {en} } @inproceedings{MartinGeisslerHeynetal.2011, author = {Martin, Alexander and Geißler, Bj{\"o}rn and Heyn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, booktitle = {Optimierung in der Energiewirtschaft}, publisher = {VDI-Verlag, D{\"u}sseldorf}, pages = {105 -- 114}, year = {2011}, language = {en} }