@misc{SchuetteKlusHartmann, author = {Sch{\"u}tte, Christof and Klus, Stefan and Hartmann, Carsten}, title = {Overcoming the Timescale Barrier in Molecular Dynamics: Transfer Operators, Variational Principles, and Machine Learning}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88637}, abstract = {One of the main challenges in molecular dynamics is overcoming the "timescale barrier", a phrase used to describe that in many realistic molecular systems, biologically important rare transitions occur on timescales that are not accessible to direct numerical simulation, not even on the largest or specifically dedicated supercomputers. This article discusses how to circumvent the timescale barrier by a collection of transfer operator-based techniques that have emerged from dynamical systems theory, numerical mathematics, and machine learning over the last two decades. We will focus on how transfer operators can be used to approximate the dynamical behavior on long timescales, review the introduction of this approach into molecular dynamics, and outline the respective theory as well as the algorithmic development from the early numerics-based methods, via variational reformulations, to modern data-based techniques utilizing and improving concepts from machine learning. Furthermore, its relation to rare event simulation techniques will be explained, revealing a broad equivalence of variational principles for long-time quantities in MD. The article will mainly take a mathematical perspective and will leave the application to real-world molecular systems to the more than 1000 research articles already written on this subject.}, language = {en} } @misc{HartmannBanischSarichetal., author = {Hartmann, Carsten and Banisch, Ralf and Sarich, Marco and Badowski, Thomas and Sch{\"u}tte, Christof}, title = {Characterization of Rare Events in Molecular Dynamics}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42410}, abstract = {A good deal of molecular dynamics simulations aims at predicting and quantifying rare events, such as the folding of a protein or a phase transition. Simulating rare events is often prohibitive, especially if the equations of motion are high-dimensional, as is the case in molecular dynamics. Various algorithms have been proposed for efficiently computing mean first passage times, transition rates or reaction pathways. This article surveys and discusses recent developments in the field of rare event simulation and outlines a new approach that combines ideas from optimal control and statistical mechanics. The optimal control approach described in detail resembles the use of Jarzynski's equality for free energy calculations, but with an optimized protocol that speeds up the sampling, while (theoretically) giving variance-free estimators of the rare events statistics. We illustrate the new approach with two numerical examples and discuss its relation to existing methods.}, language = {en} } @misc{ZhangHartmannSchuette, author = {Zhang, Wei and Hartmann, Carsten and Sch{\"u}tte, Christof}, title = {Effective Dynamics Along Given Reaction Coordinates, and Reaction Rate Theory}, issn = {1438-0064}, doi = {10.1039/C6FD00147E}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-59706}, abstract = {In molecular dynamics and related fields one considers dynamical descriptions of complex systems in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension, large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction coordinates is examined in order to extract statistical information like free energies or reaction rates. In this context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted considerable attention in the literature. In this article, we contribute to this discussion: We first show that if we start with an ergodic diffusion processes whose invariant measure is unique then these properties are inherited by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities for the full dynamics, and compare our findings to results from approaches like Zwanzig-Mori, averaging, or homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that recent algorithmic techniques like the "equation-free" approach and the "heterogeneous multiscale method" can be seen as special cases of our approach.}, language = {en} } @misc{HartmannRichterSchuetteetal., author = {Hartmann, Carsten and Richter, Lorenz and Sch{\"u}tte, Christof and Zhang, Wei}, title = {Variational characterization of free energy: Theory and algorithms}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65045}, abstract = {The article surveys and extends variational formulations of the thermodynamic free energy and discusses their information-theoretic content from the perspective of mathematical statistics. We revisit the well-known Jarzynski equality for nonequilibrium free energy sampling within the framework of importance sampling and Girsanov change-of-measure transformations. The implications of the different variational formulations for designing efficient stochastic optimization and nonequilibrium simulation algorithms for computing free energies are discussed and illustrated.}, language = {en} } @misc{ZhangWangHartmannetal., author = {Zhang, Wei and Wang, Han and Hartmann, Carsten and Weber, Marcus and Sch{\"u}tte, Christof}, title = {Applications of the cross-entropy method to importance sampling and optimal control of diffusions}, issn = {1438-0064}, doi = {10.1137/14096493X}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49720}, abstract = {We study the cross-entropy method for diffusions. One of the results is a versatile cross-entropy algorithm that can be used to design efficient importance sampling strategies for rare events or to solve optimal control problems. The approach is based on the minimization of a suitable cross-entropy functional, with a parametric family of exponentially tilted probability distributions. We illustrate the new algorithm with several numerical examples and discuss algorithmic issues and possible extensions of the method.}, language = {en} } @misc{SarichBanischHartmannetal., author = {Sarich, Marco and Banisch, Ralf and Hartmann, Carsten and Sch{\"u}tte, Christof}, title = {Markov State Models for Rare Events in Molecular Dynamics}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42420}, abstract = {Rare but important transition events between long lived states are a key feature of many molecular systems. In many cases the computation of rare event statistics by direct molecular dynamics (MD) simulations is infeasible even on the most powerful computers because of the immensely long simulation timescales needed. Recently a technique for spatial discretization of the molecular state space designed to help overcome such problems, so-called Markov State Models (MSMs), has attracted a lot of attention. We review the theoretical background and algorithmic realization of MSMs and illustrate their use by some numerical examples. Furthermore we introduce a novel approach to using MSMs for the eļ¬ƒcient solution of optimal control problems that appear in applications where one desires to optimize molecular properties by means of external controls.}, language = {en} } @misc{WangHartmannSchuette, author = {Wang, Han and Hartmann, Carsten and Sch{\"u}tte, Christof}, title = {Linear response theory and optimal control for a molecular system under nonequilibrium conditions}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18944}, abstract = {In this paper, we propose a straightforward generalization of linear response theory to systems in nonequilibrium that are subject to nonequilibrium driving. We briefly revisit the standard linear response result for equilibrium systems, where we consider Langevin dynamics as a special case, and then give an alternative derivation using a change-of-measure argument that does not rely on any stationarity or reversibility assumption. This procedure moreover easily enables us to calculate the second order correction to the linear response formula (which may or may not be useful in practice). Furthermore, we outline how the novel nonequilibirum linear response formula can be used to compute optimal controls of molecular systems for cases in which one wants to steer the system to maximize a certain target expectation value. We illustrate our approach with simple numerical examples.}, language = {en} }