@misc{RayThiesSunkaraetal., author = {Ray, Sourav and Thies, Arne and Sunkara, Vikram and Wulkow, Hanna and Celik, {\"O}zg{\"u}r and Yerg{\"o}z, Fatih and Sch{\"u}tte, Christof and Stein, Christoph and Weber, Marcus and Winkelmann, Stefanie}, title = {Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82797}, abstract = {Initiated by mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands in normal versus diseased (inflamed) environments, we previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. Uniquely, this design recognised that GPCRs function differently under pathological versus healthy conditions. We now present a novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels associated with parameters of inflamed tissue (pH, radicals). By means of molecular dynamics simulations, we also assessed qualitative changes of the reaction rates due to additional disulfide bridges inside the GPCR binding pocket and used these rates for stochastic simulations of the corresponding reaction jump process. The modelling results were validated with in vitro experiments measuring calcium currents and G-protein activation. We found markedly reduced G-protein dissociation and calcium channel inhibition induced by NFEPP at normal pH, and enhanced constitutive G-protein activation but lower probability of ligand binding with increasing radical concentrations. These results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account.}, language = {en} } @article{NiemannWinkelmannWolfetal., author = {Niemann, Jan-Hendrik and Winkelmann, Stefanie and Wolf, Sarah and Sch{\"u}tte, Christof}, title = {Agent-based modeling: Population limits and large timescales}, series = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, volume = {31}, journal = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, number = {3}, issn = {1438-0064}, doi = {10.1063/5.0031373}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-77309}, abstract = {Modeling, simulation and analysis of interacting agent systems is a broad field of research, with existing approaches reaching from informal descriptions of interaction dynamics to more formal, mathematical models. In this paper, we study agent-based models (ABMs) given as continuous-time stochastic processes and their pathwise approximation by ordinary and stochastic differential equations (ODEs and SDEs, respectively) for medium to large populations. By means of an appropriately adapted transfer operator approach we study the behavior of the ABM process on long time scales. We show that, under certain conditions, the transfer operator approach allows to bridge the gap between the pathwise results for large populations on finite timescales, i.e., the SDE limit model, and approaches built to study dynamical behavior on long time scales like large deviation theory. The latter provides a rigorous analysis of rare events including the associated asymptotic rates on timescales that scale exponentially with the population size. We demonstrate that it is possible to reveal metastable structures and timescales of rare events of the ABM process by finite-length trajectories of the SDE process for large enough populations. This approach has the potential to drastically reduce computational effort for the analysis of ABMs.}, language = {en} } @article{NiemannKlusSchuette, author = {Niemann, Jan-Hendrik and Klus, Stefan and Sch{\"u}tte, Christof}, title = {Data-driven model reduction of agent-based systems using the Koopman generator}, series = {PLOS ONE}, volume = {16}, journal = {PLOS ONE}, number = {5}, doi = {10.1371/journal.pone.0250970}, abstract = {The dynamical behavior of social systems can be described by agent-based models. Although single agents follow easily explainable rules, complex time-evolving patterns emerge due to their interaction. The simulation and analysis of such agent-based models, however, is often prohibitively time-consuming if the number of agents is large. In this paper, we show how Koopman operator theory can be used to derive reduced models of agent-based systems using only simulation or real-world data. Our goal is to learn coarse-grained models and to represent the reduced dynamics by ordinary or stochastic differential equations. The new variables are, for instance, aggregated state variables of the agent-based model, modeling the collective behavior of larger groups or the entire population. Using benchmark problems with known coarse-grained models, we demonstrate that the obtained reduced systems are in good agreement with the analytical results, provided that the numbers of agents is sufficiently large.}, language = {en} } @misc{NiemannSchuetteKlus, author = {Niemann, Jan-Hendrik and Sch{\"u}tte, Christof and Klus, Stefan}, title = {Simulation data: Data-driven model reduction of agent-based systems using the Koopman generator}, series = {PLOS ONE}, volume = {16}, journal = {PLOS ONE}, number = {5}, doi = {http://doi.org/10.5281/zenodo.4522119}, language = {en} } @article{WulkowConradDjurdjevacConradetal., author = {Wulkow, Hanna and Conrad, Tim and Djurdjevac Conrad, Natasa and M{\"u}ller, Sebastian A. and Nagel, Kai and Sch{\"u}tte, Christof}, title = {Prediction of Covid-19 spreading and optimal coordination of counter-measures: From microscopic to macroscopic models to Pareto fronts}, series = {PLOS One}, volume = {16}, journal = {PLOS One}, number = {4}, publisher = {Public Library of Science}, doi = {10.1371/journal.pone.0249676}, language = {en} }