@misc{ZhangWangHartmannetal., author = {Zhang, Wei and Wang, Han and Hartmann, Carsten and Weber, Marcus and Sch{\"u}tte, Christof}, title = {Applications of the cross-entropy method to importance sampling and optimal control of diffusions}, issn = {1438-0064}, doi = {10.1137/14096493X}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49720}, abstract = {We study the cross-entropy method for diffusions. One of the results is a versatile cross-entropy algorithm that can be used to design efficient importance sampling strategies for rare events or to solve optimal control problems. The approach is based on the minimization of a suitable cross-entropy functional, with a parametric family of exponentially tilted probability distributions. We illustrate the new algorithm with several numerical examples and discuss algorithmic issues and possible extensions of the method.}, language = {en} } @misc{HartmannBanischSarichetal., author = {Hartmann, Carsten and Banisch, Ralf and Sarich, Marco and Badowski, Thomas and Sch{\"u}tte, Christof}, title = {Characterization of Rare Events in Molecular Dynamics}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42410}, abstract = {A good deal of molecular dynamics simulations aims at predicting and quantifying rare events, such as the folding of a protein or a phase transition. Simulating rare events is often prohibitive, especially if the equations of motion are high-dimensional, as is the case in molecular dynamics. Various algorithms have been proposed for efficiently computing mean first passage times, transition rates or reaction pathways. This article surveys and discusses recent developments in the field of rare event simulation and outlines a new approach that combines ideas from optimal control and statistical mechanics. The optimal control approach described in detail resembles the use of Jarzynski's equality for free energy calculations, but with an optimized protocol that speeds up the sampling, while (theoretically) giving variance-free estimators of the rare events statistics. We illustrate the new approach with two numerical examples and discuss its relation to existing methods.}, language = {en} } @misc{SarichBanischHartmannetal., author = {Sarich, Marco and Banisch, Ralf and Hartmann, Carsten and Sch{\"u}tte, Christof}, title = {Markov State Models for Rare Events in Molecular Dynamics}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42420}, abstract = {Rare but important transition events between long lived states are a key feature of many molecular systems. In many cases the computation of rare event statistics by direct molecular dynamics (MD) simulations is infeasible even on the most powerful computers because of the immensely long simulation timescales needed. Recently a technique for spatial discretization of the molecular state space designed to help overcome such problems, so-called Markov State Models (MSMs), has attracted a lot of attention. We review the theoretical background and algorithmic realization of MSMs and illustrate their use by some numerical examples. Furthermore we introduce a novel approach to using MSMs for the eļ¬ƒcient solution of optimal control problems that appear in applications where one desires to optimize molecular properties by means of external controls.}, language = {en} }