@article{BennHiepenOsterlandetal., author = {Benn, Andreas and Hiepen, Christian and Osterland, Marc and Sch{\"u}tte, Christof and Zwijsen, An and Knaus, Petra}, title = {Role of bone morphogenetic proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance stalk vs. tip cell competence}, series = {FASEB Journal}, volume = {31}, journal = {FASEB Journal}, number = {11}, doi = {10.1096/fj.201700193RR}, pages = {4720 -- 4733}, abstract = {Before the onset of sprouting angiogenesis, the endothelium is prepatterned for the positioning of tip and stalk cells. Both cell identities are not static, as endothelial cells (ECs) constantly compete for the tip cell position in a dynamic fashion. Here, we show that both bone morphogenetic protein (BMP) 2 and BMP6 are proangiogenic in vitro and ex vivo and that the BMP type I receptors, activin receptor-like kinase (ALK)3 and ALK2, play crucial and distinct roles in this process. BMP2 activates the expression of tip cell-associated genes, such as DLL4 (delta-like ligand 4) and KDR (kinase insert domain receptor), and p38-heat shock protein 27 (HSP27)-dependent cell migration, thereby generating tip cell competence. Whereas BMP6 also triggers collective cell migration via the p38-HSP27 signaling axis, BMP6 induces in addition SMAD1/5 signaling, thereby promoting the expression of stalk cell-associated genes, such as HES1 (hairy and enhancer of split 1) and FLT1 (fms-like tyrosine kinase 1). Specifically, ALK3 is required for sprouting from HUVEC spheroids, whereas ALK2 represses sprout formation. We demonstrate that expression levels and respective complex formation of BMP type I receptors in ECs determine stalk vs. tip cell identity, thus contributing to endothelial plasticity during sprouting angiogenesis. As antiangiogenic monotherapies that target the VEGF or ALK1 pathways have not fulfilled efficacy objectives in clinical trials, the selective targeting of the ALK2/3 pathways may be an attractive new approach.}, language = {en} } @article{HuisingaBestCordesetal.1999, author = {Huisinga, Wilhelm and Best, Christoph and Cordes, Frank and Roitzsch, Rainer and Sch{\"u}tte, Christof}, title = {Identification of Molecular Conformations via Statistical Analysis of Simulation Data}, series = {Comp. Chem.}, volume = {20}, journal = {Comp. Chem.}, pages = {1760 -- 1774}, year = {1999}, language = {en} } @article{vonKleistSchuetteZhang, author = {von Kleist, Max and Sch{\"u}tte, Christof and Zhang, Wei}, title = {Statistical analysis of the first passage path ensemble of jump processes}, series = {Journal of Statistical Physics}, volume = {170}, journal = {Journal of Statistical Physics}, doi = {10.1007/s10955-017-1949-x}, pages = {809 -- 843}, abstract = {The transition mechanism of jump processes between two different subsets in state space reveals important dynamical information of the processes and therefore has attracted considerable attention in the past years. In this paper, we study the first passage path ensemble of both discrete-time and continuous-time jump processes on a finite state space. The main approach is to divide each first passage path into nonreactive and reactive segments and to study them separately. The analysis can be applied to jump processes which are non-ergodic, as well as continuous-time jump processes where the waiting time distributions are non-exponential. In the particular case that the jump processes are both Markovian and ergodic, our analysis elucidates the relations between the study of the first passage paths and the study of the transition paths in transition path theory. We provide algorithms to numerically compute statistics of the first passage path ensemble. The computational complexity of these algorithms scales with the complexity of solving a linear system, for which efficient methods are available. Several examples demonstrate the wide applicability of the derived results across research areas.}, language = {en} } @misc{OsterlandBennProhaskaetal., author = {Osterland, Marc and Benn, Andreas and Prohaska, Steffen and Sch{\"u}tte, Christof}, title = {Single Cell Tracking in Phase-Contrast Microscopy}, series = {EMBL Symposium 2015 - Seeing is Believing - Imaging the Processes of Life}, journal = {EMBL Symposium 2015 - Seeing is Believing - Imaging the Processes of Life}, abstract = {In this work, we developed an automatic algorithm to analyze cell migration in chemotaxis assays, based on phase-contrast time-lapse microscopy. While manual approaches are still widely used in recent publications, our algorithm is able to track hundreds of single cells per frame. The extracted paths are analysed with traditional geometrical approaches as well as diffusion-driven Markov state models (MSM). Based on these models, a detailed view on spatial and temporal effects is possible. Using our new approach on experimental data, we are able to distinguish between directed migration (e.g. towards a VEGF gradient) and random migration without favored direction. A calculation of the committor probabilities reveals that cells of the whole image area are more likely to migrate directly towards the VEGF than away from it during the first four hours. However, in absence of a chemoattractant, cells migrate more likely to their nearest image border. These conclusions are supported by the spatial mean directions. In a next step, the cell-cell interaction during migration and the migration of cell clusters will be analyzed. Furthermore, we want to observe phenotypical changes during migration based on fluorescence microscopy and machine learning. The algorithm is part of a collaborative platform which brings the experimental expertise of scientists from life sciences and the analytical knowledge of computer scientists together. This platform is built using web-based technologies with a responsive real-time user interface. All data, including raw and metadata as well as the accompanying results, will be stored in a secure and scalable compute cluster. The compute cluster provides sufficient space and computational power for modern image-based experiments and their analyses. Specific versions of data and results can be tagged to keep immutable records for archival.}, language = {en} } @misc{HorenkoSchmidtEhrenbergSchuette2006, author = {Horenko, Illia and Schmidt-Ehrenberg, Johannes and Sch{\"u}tte, Christof}, title = {Set-oriented dimension reduction: Localizing principal component analysis via hidden Markov models}, series = {Computational Life Sciences II}, volume = {4216}, journal = {Computational Life Sciences II}, publisher = {Springer}, pages = {98 -- 115}, year = {2006}, language = {en} } @article{WulkowKoltaiSunkaraetal., author = {Wulkow, Niklas and Koltai, P{\´e}ter and Sunkara, Vikram and Sch{\"u}tte, Christof}, title = {Data-driven modelling of nonlinear dynamics by barycentric coordinates and memory}, series = {J. Stat. Phys.}, journal = {J. Stat. Phys.}, abstract = {We present a numerical method to model dynamical systems from data. We use the recently introduced method Scalable Probabilistic Approximation (SPA) to project points from a Euclidean space to convex polytopes and represent these projected states of a system in new, lower-dimensional coordinates denoting their position in the polytope. We then introduce a specific nonlinear transformation to construct a model of the dynamics in the polytope and to transform back into the original state space. To overcome the potential loss of information from the projection to a lower-dimensional polytope, we use memory in the sense of the delay-embedding theorem of Takens. By construction, our method produces stable models. We illustrate the capacity of the method to reproduce even chaotic dynamics and attractors with multiple connected components on various examples.}, language = {en} } @article{RaharinirinaPeppertvonKleistetal., author = {Raharinirina, Alexia N. and Peppert, Felix and von Kleist, Max and Sch{\"u}tte, Christof and Sunkara, Vikram}, title = {Inferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order moments}, series = {Patterns}, volume = {2}, journal = {Patterns}, number = {9}, doi = {10.1016/j.patter.2021.100332}, abstract = {Single-cell RNA sequencing (scRNA-seq) has become ubiquitous in biology. Recently, there has been a push for using scRNA-seq snapshot data to infer the underlying gene regulatory networks (GRNs) steering cellular function. To date, this aspiration remains unrealized due to technical and computational challenges. In this work we focus on the latter, which is under-represented in the literature. We took a systemic approach by subdividing the GRN inference into three fundamental components: data pre-processing, feature extraction, and inference. We observed that the regulatory signature is captured in the statistical moments of scRNA-seq data and requires computationally intensive minimization solvers to extract it. Furthermore, current data pre-processing might not conserve these statistical moments. Although our moment-based approach is a didactic tool for understanding the different compartments of GRN inference, this line of thinking—finding computationally feasible multi-dimensional statistics of data—is imperative for designing GRN inference methods.}, language = {en} } @article{PeppertvonKleistSchuetteetal., author = {Peppert, Felix and von Kleist, Max and Sch{\"u}tte, Christof and Sunkara, Vikram}, title = {On the Sufficient Condition for Solving the Gap-Filling Problem Using Deep Convolutional Neural Networks}, series = {IEEE Transactions on Neural Networks and Learning Systems}, volume = {33}, journal = {IEEE Transactions on Neural Networks and Learning Systems}, number = {11}, doi = {10.1109/TNNLS.2021.3072746}, pages = {6194 -- 6205}, abstract = {Deep convolutional neural networks (DCNNs) are routinely used for image segmentation of biomedical data sets to obtain quantitative measurements of cellular structures like tissues. These cellular structures often contain gaps in their boundaries, leading to poor segmentation performance when using DCNNs like the U-Net. The gaps can usually be corrected by post-hoc computer vision (CV) steps, which are specific to the data set and require a disproportionate amount of work. As DCNNs are Universal Function Approximators, it is conceivable that the corrections should be obsolete by selecting the appropriate architecture for the DCNN. In this article, we present a novel theoretical framework for the gap-filling problem in DCNNs that allows the selection of architecture to circumvent the CV steps. Combining information-theoretic measures of the data set with a fundamental property of DCNNs, the size of their receptive field, allows us to formulate statements about the solvability of the gap-filling problem independent of the specifics of model training. In particular, we obtain mathematical proof showing that the maximum proficiency of filling a gap by a DCNN is achieved if its receptive field is larger than the gap length. We then demonstrate the consequence of this result using numerical experiments on a synthetic and real data set and compare the gap-filling ability of the ubiquitous U-Net architecture with variable depths. Our code is available at https://github.com/ai-biology/dcnn-gap-filling.}, language = {en} } @article{SchulzePeppertSchuetteetal., author = {Schulze, Kenrick and Peppert, Felix and Sch{\"u}tte, Christof and Sunkara, Vikram}, title = {Chimeric U-Net-Modifying the standard U-Net towards Explainability}, series = {bioRxiv}, journal = {bioRxiv}, doi = {10.1101/2022.12.01.518699}, language = {en} } @article{ShaoBjaanaesHellandetal., author = {Shao, Borong and Bjaanaes, Maria and Helland, Aslaug and Sch{\"u}tte, Christof and Conrad, Tim}, title = {EMT network-based feature selection improves prognosis prediction in lung adenocarcinoma}, series = {PLOS ONE}, volume = {14}, journal = {PLOS ONE}, number = {1}, doi = {10.1371/journal.pone.0204186}, abstract = {Various feature selection algorithms have been proposed to identify cancer prognostic biomarkers. In recent years, however, their reproducibility is criticized. The performance of feature selection algorithms is shown to be affected by the datasets, underlying networks and evaluation metrics. One of the causes is the curse of dimensionality, which makes it hard to select the features that generalize well on independent data. Even the integration of biological networks does not mitigate this issue because the networks are large and many of their components are not relevant for the phenotype of interest. With the availability of multi-omics data, integrative approaches are being developed to build more robust predictive models. In this scenario, the higher data dimensions create greater challenges. We proposed a phenotype relevant network-based feature selection (PRNFS) framework and demonstrated its advantages in lung cancer prognosis prediction. We constructed cancer prognosis relevant networks based on epithelial mesenchymal transition (EMT) and integrated them with different types of omics data for feature selection. With less than 2.5\% of the total dimensionality, we obtained EMT prognostic signatures that achieved remarkable prediction performance (average AUC values above 0.8), very significant sample stratifications, and meaningful biological interpretations. In addition to finding EMT signatures from different omics data levels, we combined these single-omics signatures into multi-omics signatures, which improved sample stratifications significantly. Both single- and multi-omics EMT signatures were tested on independent multi-omics lung cancer datasets and significant sample stratifications were obtained.}, language = {en} }