@article{TodtLameckerRammetal.2014, author = {Todt, Ingo and Lamecker, Hans and Ramm, Heiko and Frenzel, Henning and Wollenberg, Barbara and Beleites, Thomas and Zahnert, Thomas and Thomas, Jan Peter and Dazert, Stefan and Ernst, Arneborg}, title = {Entwicklung eines CT-Daten-basierten Vibrant-Bonebridge-Viewers}, series = {HNO}, volume = {62}, journal = {HNO}, publisher = {Springer}, doi = {10.1007/s00106-014-2851-3}, pages = {439 -- 442}, year = {2014}, abstract = {Die Positionierung des B-FMT der Vibrant Bonebridge kann aufgrund der anatomischen Verh{\"a}ltnisse des Mastoids und der Gr{\"o}ße des Aktuators ohne eine vorherige Beurteilung der individuellen Computertomographie (CT) des Felsenbeins problematisch sein. Die Entwicklung eines einfach zu bedienenden Viewers, welcher eine Positionierung des B-FMT im Felsenbeinmodell erm{\"o}glicht und hier auf individuelle potenzielle anatomische Konflikte hinweist sowie L{\"o}sungsm{\"o}glichkeiten anbietet, kann ein hilfreiches Werkzeug zur pr{\"a}operativen Positionierung sein. Ziel der Arbeit war die Definition von Anforderungen und die Anfertigung eines Prototyps eines Vibrant-Bonebridge-Viewers. Auf der Basis einer ZIBAmira-Software-Version und der Inklusion eines B-FMT-Modells unter Erstellung eines Felsenbeinmodells, welches die intuitive Beurteilung von Konflikten erm{\"o}glicht, erfolgte die Erstellung des Prototyps eines Vibrant-Bonebridge-Viewers.Ergebnisse. Die Segmentierungszeit der individuellen DICOM-Daten („digital imaging and communications in medicine") betr{\"a}gt etwa 5 min. Eine Positionierung im individuellen 3-D-Felsenbeinmodell erm{\"o}glicht die quantitative und qualitative Beurteilung von Konflikten (Sinus sigmoideus, mittlere Sch{\"a}delgrube) und das Aufsuchen einer bevorzugten Position. Das Anheben des B-FMT mittels virtueller Unterlegscheiben kann simuliert werden. Der erstellte Vibrant-Bonebridge-Viewer erm{\"o}glicht verl{\"a}sslich eine Simulation der B-FMT-Positionierung. Die klinische Anwendbarkeit muss evaluiert werden.}, language = {de} } @article{TodtLameckerRammetal., author = {Todt, Ingo and Lamecker, Hans and Ramm, Heiko and Ernst, Arneborg}, title = {A computed tomographic data-based vibrant bonebridge visualization tool}, series = {Cochlear Implants International}, volume = {15}, journal = {Cochlear Implants International}, number = {S1}, doi = {10.1179/1467010014Z.000000000155}, pages = {72 -- 74}, abstract = {Information about the temporal bone size and variations of anatomical structures are crucial for a safe positioning of the Vibrant Bonebridge B-FMT. A radiological based preoperative planning of the surgical procedure decreases the surgical time and minimizes the risk of complications. We developed a software tool, which allows a catch up of foreign DICOM data based CT temporal bone scans. The individual CT scan is transmitted into a 3D reconstructed pattern of the temporal bone. In this 3D reconstruction the individually favored position of the B- FMT should be found. The software allows a determination of a safe B-FMT position by identifying the individual relation of middle fossa, jugular bulb and external auditory canal. Skull thickness and screw length are contained parameters for the surgical planning. An easy to handle software tool allows a radiologically data based safe and fast surgical positioning of the B-FMT.}, language = {en} } @misc{BindernagelKainmuellerRammetal.2012, author = {Bindernagel, Matthias and Kainm{\"u}ller, Dagmar and Ramm, Heiko and Lamecker, Hans and Zachow, Stefan}, title = {Analysis of inter-individual anatomical shape variations of joint structures}, series = {Proc. Int. Society of Computer Assisted Orthopaedic Surgery (CAOS)}, journal = {Proc. Int. Society of Computer Assisted Orthopaedic Surgery (CAOS)}, number = {210}, year = {2012}, language = {en} } @article{EhlkeRammLameckeretal.2013, author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Hege, Hans-Christian and Zachow, Stefan}, title = {Fast Generation of Virtual X-ray Images for Reconstruction of 3D Anatomy}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {19}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2013.159}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-35928}, pages = {2673 -- 2682}, year = {2013}, language = {en} } @inproceedings{RammVictoriaMorilloTodtetal.2013, author = {Ramm, Heiko and Victoria Morillo, Oscar Salvador and Todt, Ingo and Schirmacher, Hartmut and Ernst, Arneborg and Zachow, Stefan and Lamecker, Hans}, title = {Visual Support for Positioning Hearing Implants}, series = {Proceedings of the 12th annual meeting of the CURAC society}, booktitle = {Proceedings of the 12th annual meeting of the CURAC society}, editor = {Freysinger, Wolfgang}, pages = {116 -- 120}, year = {2013}, language = {en} } @misc{EhlkeRammLameckeretal.2012, author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Zachow, Stefan}, title = {Efficient projection and deformation of volumetric shape and intensity models for accurate simulation of X-ray images}, series = {Eurographics Workshop on Visual Computing for Biomedicine (NVIDIA best poster award)}, journal = {Eurographics Workshop on Visual Computing for Biomedicine (NVIDIA best poster award)}, year = {2012}, language = {en} } @inproceedings{KahntRammLameckeretal.2012, author = {Kahnt, Max and Ramm, Heiko and Lamecker, Hans and Zachow, Stefan}, title = {Feature-Preserving, Multi-Material Mesh Generation using Hierarchical Oracles}, series = {Proc. MICCAI Workshop on Mesh Processing in Medical Image Analysis (MeshMed)}, volume = {7599}, booktitle = {Proc. MICCAI Workshop on Mesh Processing in Medical Image Analysis (MeshMed)}, editor = {Levine, Joshua A. and Paulsen, Rasmus R. and Zhang, Yongjie}, pages = {101 -- 111}, year = {2012}, language = {en} } @article{PimentelSzengelEhlkeetal., author = {Pimentel, Pedro and Szengel, Angelika and Ehlke, Moritz and Lamecker, Hans and Zachow, Stefan and Estacio, Laura and Doenitz, Christian and Ramm, Heiko}, title = {Automated Virtual Reconstruction of Large Skull Defects using Statistical Shape Models and Generative Adversarial Networks}, series = {Towards the Automatization of Cranial Implant Design in Cranioplasty}, volume = {12439}, journal = {Towards the Automatization of Cranial Implant Design in Cranioplasty}, editor = {Li, Jianning and Egger, Jan}, edition = {1}, publisher = {Springer International Publishing}, doi = {10.1007/978-3-030-64327-0_3}, pages = {16 -- 27}, abstract = {We present an automated method for extrapolating missing regions in label data of the skull in an anatomically plausible manner. The ultimate goal is to design patient-speci� c cranial implants for correcting large, arbitrarily shaped defects of the skull that can, for example, result from trauma of the head. Our approach utilizes a 3D statistical shape model (SSM) of the skull and a 2D generative adversarial network (GAN) that is trained in an unsupervised fashion from samples of healthy patients alone. By � tting the SSM to given input labels containing the skull defect, a First approximation of the healthy state of the patient is obtained. The GAN is then applied to further correct and smooth the output of the SSM in an anatomically plausible manner. Finally, the defect region is extracted using morphological operations and subtraction between the extrapolated healthy state of the patient and the defective input labels. The method is trained and evaluated based on data from the MICCAI 2020 AutoImplant challenge. It produces state-of-the art results on regularly shaped cut-outs that were present in the training and testing data of the challenge. Furthermore, due to unsupervised nature of the approach, the method generalizes well to previously unseen defects of varying shapes that were only present in the hidden test dataset.}, language = {en} } @article{HettichSchierjottSchillingetal., author = {Hettich, G. and Schierjott, R. A. and Schilling, C. and Maas, A. and Ramm, Heiko and Bindernagel, Matthias and Lamecker, Hans and Grupp, T. M.}, title = {Validation of a Statistical Shape Model for Acetabular Bone Defect Analysis}, series = {ISTA 2018 London Abstract Book}, journal = {ISTA 2018 London Abstract Book}, abstract = {Acetabular bone defects are still challenging to quantify. Numerous classification schemes have been proposed to categorize the diverse kinds of defects. However, these classification schemes are mainly descriptive and hence it remains difficult to apply them in pre-clinical testing, implant development and pre-operative planning. By reconstructing the native situation of a defect pelvis using a Statistical Shape Model (SSM), a more quantitative analysis of the bone defects could be performed. The aim of this study is to develop such a SSM and to validate its accuracy using relevant clinical scenarios and parameters.}, language = {en} } @article{BrueningHildebrandtHepptetal., author = {Br{\"u}ning, Jan and Hildebrandt, Thomas and Heppt, Werner and Schmidt, Nora and Lamecker, Hans and Szengel, Angelika and Amiridze, Natalja and Ramm, Heiko and Bindernagel, Matthias and Zachow, Stefan and Goubergrits, Leonid}, title = {Characterization of the Airflow within an Average Geometry of the Healthy Human Nasal Cavity}, series = {Scientific Reports}, volume = {3755}, journal = {Scientific Reports}, number = {10}, doi = {10.1038/s41598-020-60755-3}, abstract = {This study's objective was the generation of a standardized geometry of the healthy nasal cavity. An average geometry of the healthy nasal cavity was generated using a statistical shape model based on 25 symptom-free subjects. Airflow within the average geometry and these geometries was calculated using fluid simulations. Integral measures of the nasal resistance, wall shear stresses (WSS) and velocities were calculated as well as cross-sectional areas (CSA). Furthermore, individual WSS and static pressure distributions were mapped onto the average geometry. The average geometry featured an overall more regular shape that resulted in less resistance, reduced wall shear stresses and velocities compared to the median of the 25 geometries. Spatial distributions of WSS and pressure of average geometry agreed well compared to the average distributions of all individual geometries. The minimal CSA of the average geometry was larger than the median of all individual geometries (83.4 vs. 74.7 mm²). The airflow observed within the average geometry of the healthy nasal cavity did not equal the average airflow of the individual geometries. While differences observed for integral measures were notable, the calculated values for the average geometry lay within the distributions of the individual parameters. Spatially resolved parameters differed less prominently.}, language = {en} }