@inproceedings{Prohaska2006, author = {Prohaska, Steffen}, title = {Interaktive Visualisierung und Datenanalyse: Herausforderungen durch wachsende Datenmengen}, series = {Kartographische Schriften}, volume = {10}, booktitle = {Kartographische Schriften}, pages = {103 -- 110}, year = {2006}, language = {en} } @article{HegeWeinkaufProhaskaetal.2005, author = {Hege, Hans-Christian and Weinkauf, Tino and Prohaska, Steffen and Hutanu, Andrei}, title = {Towards distributed visualization and analysis of large flow data}, series = {JSME International Journal, Series B}, volume = {48 (2)}, journal = {JSME International Journal, Series B}, pages = {241 -- 246}, year = {2005}, language = {en} } @inproceedings{DercksenProhaskaHege2005, author = {Dercksen, Vincent J. and Prohaska, Steffen and Hege, Hans-Christian}, title = {Fast cross-sectional display of large data sets}, series = {IAPR Conference on Machine Vision Applications}, booktitle = {IAPR Conference on Machine Vision Applications}, address = {Tsukuba, Japan}, pages = {336 -- 339}, year = {2005}, language = {en} } @inproceedings{KaehlerProhaskaHutanuetal.2005, author = {K{\"a}hler, Ralf and Prohaska, Steffen and Hutanu, Andrei and Hege, Hans-Christian}, title = {Visualization of time-dependent remote adaptive mesh refinement data}, series = {Proc. IEEE Visualization 2005}, booktitle = {Proc. IEEE Visualization 2005}, address = {Minneapolis, USA}, doi = {10.1109/VISUAL.2005.1532793}, pages = {175 -- 182}, year = {2005}, language = {en} } @article{ThomsenLaibKolleretal.2005, author = {Thomsen, Jesper and Laib, Andreas and Koller, Bruno and Prohaska, Steffen and Mosekilde, L. and Gowin, Wolfgang}, title = {Stereological measures of trabecular bone structure: Comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies}, series = {Journal of Microscopy}, volume = {218}, journal = {Journal of Microscopy}, pages = {171 -- 179}, year = {2005}, language = {en} } @article{CassotLauwersFouardetal.2006, author = {Cassot, Francis and Lauwers, Frederic and Fouard, C{\´e}line and Prohaska, Steffen and Lauwer-Cances, Valerie}, title = {A novel three-dimensional computer assisted method for a quantitative study of microvascular networks of the human cerebral cortex}, series = {Microcirculation}, volume = {13}, journal = {Microcirculation}, pages = {15 -- 32}, year = {2006}, language = {en} } @article{FouardMalandainProhaskaetal.2006, author = {Fouard, C{\´e}line and Malandain, Gr{\´e}goire and Prohaska, Steffen and Westerhoff, Malte}, title = {Blockwise processing applied to brain micro-vascular network study}, series = {IEEE Transactions on Medical Imaging}, volume = {25}, journal = {IEEE Transactions on Medical Imaging}, number = {10}, doi = {10.1109/TMI.2006.880670}, pages = {1319 -- 1328}, year = {2006}, language = {en} } @article{ZaikinSaparinKurthsetal.2005, author = {Zaikin, Alexei and Saparin, Peter and Kurths, J{\"u}rgen and Prohaska, Steffen and Gowin, Wolfgang}, title = {Modeling resorption in 2D-CT and 3D μ-CT bone images}, series = {Int. J. of Bif. and Chaos}, volume = {15(9)}, journal = {Int. J. of Bif. and Chaos}, pages = {2995 -- 3009}, year = {2005}, language = {en} } @inproceedings{ProhaskaHutanu2005, author = {Prohaska, Steffen and Hutanu, Andrei}, title = {Remote data access for interactive visualization}, series = {13th Annual Mardi Gras Conference: Frontiers of Grid Applications and Technologies}, booktitle = {13th Annual Mardi Gras Conference: Frontiers of Grid Applications and Technologies}, pages = {17 -- 22}, year = {2005}, language = {en} } @article{WeberTranfieldHoeoegetal., author = {Weber, Britta and Tranfield, Erin M. and H{\"o}{\"o}g, Johanna L. and Baum, Daniel and Antony, Claude and Hyman, Tony and Verbavatz, Jean-Marc and Prohaska, Steffen}, title = {Automated stitching of microtubule centerlines across serial electron tomograms}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0113222}, pages = {e113222}, language = {en} } @article{FabigKiewiszLindowetal., author = {Fabig, Gunar and Kiewisz, Robert and Lindow, Norbert and Powers, James A. and Cota, Vanessa and Quintanilla, Luis J. and Brugu{\´e}s, Jan and Prohaska, Steffen and Chu, Diana S. and M{\"u}ller-Reichert, Thomas}, title = {Sperm-specific meiotic chromosome segregation in C. elegans}, series = {eLife}, volume = {9}, journal = {eLife}, doi = {10.7554/eLife.50988}, pages = {e50988}, language = {en} } @article{BuchmannKaplanPowelletal., author = {Buchmann, Jens and Kaplan, Bernhard and Powell, Samuel and Prohaska, Steffen and Laufer, Jan}, title = {Quantitative PA tomography of high resolution 3-D images: experimental validation in tissue phantoms}, series = {Photoacoustics}, volume = {17}, journal = {Photoacoustics}, doi = {10.1016/j.pacs.2019.100157}, pages = {100157}, abstract = {Quantitative photoacoustic tomography aims recover the spatial distribution of absolute chromophore concentrations and their ratios from deep tissue, high-resolution images. In this study, a model-based inversion scheme based on a Monte-Carlo light transport model is experimentally validated on 3-D multispectral images of a tissue phantom acquired using an all-optical scanner with a planar detection geometry. A calibrated absorber allowed scaling of the measured data during the inversion, while an acoustic correction method was employed to compensate the effects of limited view detection. Chromophore- and fluence-dependent step sizes and Adam optimization were implemented to achieve rapid convergence. High resolution 3-D maps of absolute concentrations and their ratios were recovered with high accuracy. Potential applications of this method include quantitative functional and molecular photoacoustic tomography of deep tissue in preclinical and clinical studies.}, language = {en} } @article{LindowBruenigDercksenetal., author = {Lindow, Norbert and Br{\"u}nig, Florian and Dercksen, Vincent J. and Fabig, Gunar and Kiewisz, Robert and Redemann, Stefanie and M{\"u}ller-Reichert, Thomas and Prohaska, Steffen and Baum, Daniel}, title = {Semi-automatic stitching of filamentous structures in image stacks from serial-section electron tomography}, series = {bioRxiv}, journal = {bioRxiv}, doi = {10.1101/2020.05.28.120899}, abstract = {We present a software-assisted workflow for the alignment and matching of filamentous structures across a 3D stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After an initial alignment, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. Supported by a visual quality assessment of regions that have been already inspected, this allows a trade-off between quality and manual labor. The software tool was developed to investigate cell division by quantitative 3D analysis of microtubules (MTs) in both mitotic and meiotic spindles. For this, each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. In practice, automatic stitching alone provides only an incomplete solution, because large physical distortions and a low signal-to-noise ratio often cause experimental difficulties. To derive 3D models of spindles despite the problems related to sample preparation and subsequent data collection, semi-automatic validation and correction is required to remove stitching mistakes. However, due to the large number of MTs in spindles (up to 30k) and their resulting dense spatial arrangement, a naive inspection of each MT is too time consuming. Furthermore, an interactive visualization of the full image stack is hampered by the size of the data (up to 100 GB). Here, we present a specialized, interactive, semi-automatic solution that considers all requirements for large-scale stitching of filamentous structures in serial-section image stacks. The key to our solution is a careful design of the visualization and interaction tools for each processing step to guarantee real-time response, and an optimized workflow that efficiently guides the user through datasets.}, language = {en} } @article{JinKiralOzeletal., author = {Jin, Eugene Jennifer and Kiral, Ferdi Ridvan and Ozel, Mehmet Neset and Burchardt, Lara Sophie and Osterland, Marc and Epstein, Daniel and Wolfenberg, Heike and Prohaska, Steffen and Hiesinger, Peter Robin}, title = {Live Observation of Two Parallel Membrane Degradation Pathways at Axon Terminals}, series = {Current Biology}, volume = {28}, journal = {Current Biology}, number = {7}, doi = {10.1016/j.cub.2018.02.032}, pages = {1027 -- 1038.e4}, abstract = {Neurons are highly polarized cells that require continuous turnover of membrane proteins at axon terminals to develop, function, and survive. Yet, it is still unclear whether membrane protein degradation requires transport back to the cell body or whether degradation also occurs locally at the axon terminal, where live observation of sorting and degradation has remained a challenge. Here, we report direct observation of two cargo-specific membrane protein degradation mechanisms at axon terminals based on a live-imaging approach in intact Drosophila brains. We show that different acidification-sensing cargo probes are sorted into distinct classes of degradative ''hub'' compartments for synaptic vesicle proteins and plasma membrane proteins at axon terminals. Sorting and degradation of the two cargoes in the separate hubs are molecularly distinct. Local sorting of synaptic vesicle proteins for degradation at the axon terminal is, surprisingly, Rab7 independent, whereas sorting of plasma membrane proteins is Rab7 dependent. The cathepsin-like protease CP1 is specific to synaptic vesicle hubs, and its delivery requires the vesicle SNARE neuronal synaptobrevin. Cargo separation only occurs at the axon terminal, whereas degradative compartments at the cell body are mixed. These data show that at least two local, molecularly distinct pathways sort membrane cargo for degradation specifically at the axon terminal, whereas degradation can occur both at the terminal and en route to the cell body.}, language = {en} } @misc{LindowBruenigDercksenetal., author = {Lindow, Norbert and Br{\"u}nig, Florian and Dercksen, Vincent J. and Fabig, Gunar and Kiewisz, Robert and Redemann, Stefanie and M{\"u}ller-Reichert, Thomas and Prohaska, Steffen}, title = {Semi-automatic Stitching of Serial Section Image Stacks with Filamentous Structures}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73739}, abstract = {In this paper, we present a software-assisted workflow for the alignment and matching of filamentous structures across a stack of 3D serial image sections. This is achieved by a combination of automatic methods, visual validation, and interactive correction. After an initial alignment, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. This is supported by a quality assessment that visualizes regions that have been already inspected and, thus, allows a trade-off between quality and manual labor. The software tool was developed in collaboration with biologists who investigate microtubule-based spindles during cell division. To quantitatively understand the structural organization of such spindles, a 3D reconstruction of the numerous microtubules is essential. Each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The sections then need to be stitched, i.e. non-rigidly aligned; and the microtubules need to be traced in each section and connected across section boundaries. Experiments led to the conclusion that automatic methods for stitching alone provide only an incomplete solution to practical analysis needs. Automatic methods may fail due to large physical distortions, a low signal-to-noise ratio of the images, or other unexpected experimental difficulties. In such situations, semi-automatic validation and correction is required to rescue as much information as possible to derive biologically meaningful results despite of some errors related to data collection. Since the correct stitching is visually not obvious due to the number of microtubules (up to 30k) and their dense spatial arrangement, these are difficult tasks. Furthermore, a naive inspection of each microtubule is too time consuming. In addition, interactive visualization is hampered by the size of the image data (up to 100 GB). Based on the requirements of our collaborators, we present a practical solution for the semi-automatic stitching of serial section image stacks with filamentous structures.}, language = {en} } @article{BuchmannKaplanPowelletal., author = {Buchmann, Jens and Kaplan, Bernhard and Powell, Samuel and Prohaska, Steffen and Laufer, Jan}, title = {3D quantitative photoacoustic tomography using an adjoint radiance Monte Carlo model and gradient descent}, series = {Journal of Biomedical Optics}, volume = {24}, journal = {Journal of Biomedical Optics}, number = {6}, doi = {10.1117/1.JBO.24.6.066001}, pages = {066001}, abstract = {Quantitative photoacoustic tomography aims to recover maps of the local concentrations of tissue chromophores from multispectral images. While model-based inversion schemes are promising approaches, major challenges to their practical implementation include the unknown fluence distribution and the scale of the inverse problem. This paper describes an inversion scheme based on a radiance Monte Carlo model and an adjoint-assisted gradient optimization that incorporates fluence-dependent step sizes and adaptive moment estimation. The inversion is shown to recover absolute chromophore concentrations, blood oxygen saturation and the Gr{\"u}neisen parameter from in silico 3D phantom images for different radiance approximations. The scattering coefficient was assumed to be homogeneous and known a priori.}, language = {en} } @incollection{LindowRedemannBruenigetal., author = {Lindow, Norbert and Redemann, Stefanie and Br{\"u}nig, Florian and Fabig, Gunar and M{\"u}ller-Reichert, Thomas and Prohaska, Steffen}, title = {Quantification of three-dimensional spindle architecture}, series = {Methods in Cell Biology Part B}, volume = {145}, booktitle = {Methods in Cell Biology Part B}, publisher = {Academic Press}, issn = {0091-679X}, doi = {10.1016/bs.mcb.2018.03.012}, pages = {45 -- 64}, abstract = {Mitotic and meiotic spindles are microtubule-based structures to faithfully segregate chromosomes. Electron tomography is currently the method of choice to analyze the three-dimensional (3D) architecture of both types of spindles. Over the years, we have developed methods and software for automatic segmentation and stitching of microtubules in serial sections for large-scale reconstructions. 3D reconstruction of microtubules, however, is only the first step toward biological insight. The second step is the analysis of the structural data to derive measurable spindle properties. Here, we present a comprehensive set of techniques to quantify spindle parameters. These techniques provide quantitative analyses of specific microtubule classes and are applicable to a variety of tomographic reconstructions of spindles from different organisms.}, language = {en} } @misc{RedemannLantzschLindowetal., author = {Redemann, Stefanie and Lantzsch, Ina and Lindow, Norbert and Prohaska, Steffen and Srayko, Martin and M{\"u}ller-Reichert, Thomas}, title = {A switch in microtubule orientation during C. elegans meiosis}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69855}, abstract = {In oocytes of many organisms, meiotic spindles form in the absence of centrosomes [1-5]. Such female meiotic spindles have a pointed appearance in metaphase with microtubules focused at acentrosomal spindle poles. At anaphase, the microtubules of acentrosomal spindles then transition to an inter- chromosomal array, while the spindle poles disappear. This transition is currently not understood. Previous studies have focused on this inter- chromosomal microtubule array and proposed a pushing model to drive chromosome segregation [6, 7]. This model includes an end-on orientation of microtubules with chromosomes. Alternatively, chromosomes were thought to associate along bundles of microtubules [8, 9]. Starting with metaphase, this second model proposed a pure lateral chromosome-to-microtubule association up to the final meiotic stages of anaphase. Here we applied large-scale electron tomography [10] of staged C. elegans oocytes in meiosis to analyze the orientation of microtubules in respect to chromosomes. We show that microtubules at metaphase I are primarily oriented laterally to the chromosomes and that microtubules switch to an end-on orientation during progression through anaphase. We further show that this switch in microtubule orientation involves a kinesin-13 microtubule depolymerase, KLP-7, which removes laterally associated microtubules around chromosomes. From this we conclude that both lateral and end-on modes of microtubule-to-chromosome orientations are successively used in C. elegans oocytes to segregate meiotic chromosomes.}, language = {en} } @article{RedemannLantzschLindowetal., author = {Redemann, Stefanie and Lantzsch, Ina and Lindow, Norbert and Prohaska, Steffen and Srayko, Martin and M{\"u}ller-Reichert, Thomas}, title = {A switch in microtubule orientation during C. elegans meiosis}, series = {Current Biology}, journal = {Current Biology}, issn = {0960-9822}, doi = {10.1016/j.cub.2018.07.012}, abstract = {In oocytes of many organisms, meiotic spindles form in the absence of centrosomes [1-5]. Such female meiotic spindles have a pointed appearance in metaphase with microtubules focused at acentrosomal spindle poles. At anaphase, the microtubules of acentrosomal spindles then transition to an inter- chromosomal array, while the spindle poles disappear. This transition is currently not understood. Previous studies have focused on this inter- chromosomal microtubule array and proposed a pushing model to drive chromosome segregation [6, 7]. This model includes an end-on orientation of microtubules with chromosomes. Alternatively, chromosomes were thought to associate along bundles of microtubules [8, 9]. Starting with metaphase, this second model proposed a pure lateral chromosome-to-microtubule association up to the final meiotic stages of anaphase. Here we applied large-scale electron tomography [10] of staged C. elegans oocytes in meiosis to analyze the orientation of microtubules in respect to chromosomes. We show that microtubules at metaphase I are primarily oriented laterally to the chromosomes and that microtubules switch to an end-on orientation during progression through anaphase. We further show that this switch in microtubule orientation involves a kinesin-13 microtubule depolymerase, KLP-7, which removes laterally associated microtubules around chromosomes. From this we conclude that both lateral and end-on modes of microtubule-to-chromosome orientations are successively used in C. elegans oocytes to segregate meiotic chromosomes.}, language = {en} } @article{LantzschYuChenetal., author = {Lantzsch, Ina and Yu, Che-Hang and Chen, Yu-Zen and Zimyanin, Vitaly and Yazdkhasti, Hossein and Lindow, Norbert and Szentgyoergyi, Erik and Pani, Ariel M and Prohaska, Steffen and Srayko, Martin and F{\"u}rthauer, Sebastian and Redemann, Stefanie}, title = {Microtubule reorganization during female meiosis in C. elegans}, series = {eLife}, volume = {10}, journal = {eLife}, doi = {10.7554/eLife.58903}, pages = {e58903}, abstract = {Most female meiotic spindles undergo striking morphological changes while transitioning from metaphase to anaphase. The ultra-structure of meiotic spindles, and how changes to this structure correlate with such dramatic spindle rearrangements remains largely unknown. To address this, we applied light microscopy, large-scale electron tomography and mathematical modeling of female meiotic \textit{Caenorhabditis elegans} spindles. Combining these approaches, we find that meiotic spindles are dynamic arrays of short microtubules that turn over within seconds. The results show that the metaphase to anaphase transition correlates with an increase in microtubule numbers and a decrease in their average length. Detailed analysis of the tomographic data revealed that the microtubule length changes significantly during the metaphase-to-anaphase transition. This effect is most pronounced for microtubules located within 150 nm of the chromosome surface. To understand the mechanisms that drive this transition, we developed a mathematical model for the microtubule length distribution that considers microtubule growth, catastrophe, and severing. Using Bayesian inference to compare model predictions and data, we find that microtubule turn-over is the major driver of the spindle reorganizations. Our data suggest that in metaphase only a minor fraction of microtubules, those closest to the chromosomes, are severed. The large majority of microtubules, which are not in close contact with chromosomes, do not undergo severing. Instead, their length distribution is fully explained by growth and catastrophe. This suggests that the most prominent drivers of spindle rearrangements are changes in nucleation and catastrophe rate. In addition, we provide evidence that microtubule severing is dependent on katanin.}, language = {en} } @misc{BuchmannKaplanPowelletal., author = {Buchmann, Jens and Kaplan, Bernhard and Powell, Samuel and Prohaska, Steffen and Laufer, Jan}, title = {3D quantitative photoacoustic tomography using an adjoint radiance Monte Carlo model and gradient descent}, issn = {1438-0064}, doi = {10.1117/1.JBO.24.6.066001}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72995}, abstract = {Quantitative photoacoustic tomography aims to recover maps of the local concentrations of tissue chromophores from multispectral images. While model-based inversion schemes are promising approaches, major challenges to their practical implementation include the unknown fluence distribution and the scale of the inverse problem. This paper describes an inversion scheme based on a radiance Monte Carlo model and an adjoint-assisted gradient optimization that incorporates fluence-dependent step sizes and adaptive moment estimation. The inversion is shown to recover absolute chromophore concentrations, blood oxygen saturation and the Gr{\"u}neisen parameter from in silico 3D phantom images for different radiance approximations. The scattering coefficient was assumed to be homogeneous and known a priori.}, language = {en} } @misc{BuchmannKaplanPowelletal., author = {Buchmann, Jens and Kaplan, Bernhard and Powell, Samuel and Prohaska, Steffen and Laufer, Jan}, title = {Quantitative PA tomography of high resolution 3-D images: experimental validation in tissue phantoms}, issn = {1438-0064}, doi = {10.1016/j.pacs.2019.100157}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-75416}, abstract = {Quantitative photoacoustic tomography aims recover the spatial distribution of absolute chromophore concentrations and their ratios from deep tissue, high-resolution images. In this study, a model-based inversion scheme based on a Monte-Carlo light transport model is experimentally validated on 3-D multispectral images of a tissue phantom acquired using an all-optical scanner with a planar detection geometry. A calibrated absorber allowed scaling of the measured data during the inversion, while an acoustic correction method was employed to compensate the effects of limited view detection. Chromophore- and fluence-dependent step sizes and Adam optimization were implemented to achieve rapid convergence. High resolution 3-D maps of absolute concentrations and their ratios were recovered with high accuracy. Potential applications of this method include quantitative functional and molecular photoacoustic tomography of deep tissue in preclinical and clinical studies.}, language = {en} } @phdthesis{Prohaska, author = {Prohaska, Steffen}, title = {Skeleton-based visualization of massive voxel objects with network-like architecture}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14888}, abstract = {This work introduces novel internal and external memory algorithms for computing voxel skeletons of massive voxel objects with complex network-like architecture and for converting these voxel skeletons to piecewise linear geometry, that is triangle meshes and piecewise straight lines. The presented techniques help to tackle the challenge of visualizing and analyzing 3d images of increasing size and complexity, which are becoming more and more important in, for example, biological and medical research. Section 2.3.1 contributes to the theoretical foundations of thinning algorithms with a discussion of homotopic thinning in the grid cell model. The grid cell model explicitly represents a cell complex built of faces, edges, and vertices shared between voxels. A characterization of pairs of cells to be deleted is much simpler than characterizations of simple voxels were before. The grid cell model resolves topologically unclear voxel configurations at junctions and locked voxel configurations causing, for example, interior voxels in sets of non-simple voxels. A general conclusion is that the grid cell model is superior to indecomposable voxels for algorithms that need detailed control of topology. Section 2.3.2 introduces a noise-insensitive measure based on the geodesic distance along the boundary to compute two-dimensional skeletons. The measure is able to retain thin object structures if they are geometrically important while ignoring noise on the object's boundary. This combination of properties is not known of other measures. The measure is also used to guide erosion in a thinning process from the boundary towards lines centered within plate-like structures. Geodesic distance based quantities seem to be well suited to robustly identify one- and two-dimensional skeletons. Chapter 6 applies the method to visualization of bone micro-architecture. Chapter 3 describes a novel geometry generation scheme for representing voxel skeletons, which retracts voxel skeletons to piecewise linear geometry per dual cube. The generated triangle meshes and graphs provide a link to geometry processing and efficient rendering of voxel skeletons. The scheme creates non-closed surfaces with boundaries, which contain fewer triangles than a representation of voxel skeletons using closed surfaces like small cubes or iso-surfaces. A conclusion is that thinking specifically about voxel skeleton configurations instead of generic voxel configurations helps to deal with the topological implications. The geometry generation is one foundation of the applications presented in Chapter 6. Chapter 5 presents a novel external memory algorithm for distance ordered homotopic thinning. The presented method extends known algorithms for computing chamfer distance transformations and thinning to execute I/O-efficiently when input is larger than the available main memory. The applied block-wise decomposition schemes are quite simple. Yet it was necessary to carefully analyze effects of block boundaries to devise globally correct external memory variants of known algorithms. In general, doing so is superior to naive block-wise processing ignoring boundary effects. Chapter 6 applies the algorithms in a novel method based on confocal microscopy for quantitative study of micro-vascular networks in the field of microcirculation.}, language = {en} } @misc{CostaMantonOstrovskyetal., author = {Costa, Marta and Manton, James D. and Ostrovsky, Aaron D. and Prohaska, Steffen and Jefferis, Gregory S.X.E.}, title = {NBLAST: Rapid, sensitive comparison of neuronal structure and construction of neuron family databases}, issn = {1438-0064}, doi = {10.1016/j.neuron.2016.06.012}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-59672}, abstract = {Neural circuit mapping is generating datasets of 10,000s of labeled neurons. New computational tools are needed to search and organize these data. We present NBLAST, a sensitive and rapid algorithm, for measuring pairwise neuronal similarity. NBLAST considers both position and local geometry, decomposing neurons into short segments; matched segments are scored using a probabilistic scoring matrix defined by statistics of matches and non-matches. We validated NBLAST on a published dataset of 16,129 single Drosophila neurons. NBLAST can distinguish neuronal types down to the finest level (single identified neurons) without a priori information. Cluster analysis of extensively studied neuronal classes identified new types and unreported topographical features. Fully automated clustering organized the validation dataset into 1052 clusters, many of which map onto previously described neuronal types. NBLAST supports additional query types including searching neurons against transgene expression patterns. Finally we show that NBLAST is effective with data from other invertebrates and zebrafish.}, language = {en} } @misc{ClasenPaarProhaska, author = {Clasen, Malte and Paar, Philip and Prohaska, Steffen}, title = {Level of Detail for Trees Using Clustered Ellipsoids}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14251}, number = {11-41}, abstract = {We present a level of detail method for trees based on ellipsoids and lines. We leverage the Expectation Maximization algorithm with a Gaussian Mixture Model to create a hierarchy of high-quality leaf clusterings, while the branches are simplified using agglomerative bottom-up clustering to preserve the connectivity. The simplification runs in a preprocessing step and requires no human interaction. For a fly by over and through a scene of 10k trees, our method renders on average at 40 ms/frame, up to 6 times faster than billboard clouds with comparable artifacts.}, language = {en} } @misc{KaplanLauferProhaskaetal., author = {Kaplan, Bernhard and Laufer, Jan and Prohaska, Steffen and Buchmann, Jens}, title = {Monte-Carlo-based inversion scheme for 3D quantitative photoacoustic tomography}, issn = {1438-0064}, doi = {10.1117/12.2251945}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62318}, abstract = {The goal of quantitative photoacoustic tomography (qPAT) is to recover maps of the chromophore distributions from multiwavelength images of the initial pressure. Model-based inversions that incorporate the physical processes underlying the photoacoustic (PA) signal generation represent a promising approach. Monte-Carlo models of the light transport are computationally expensive, but provide accurate fluence distributions predictions, especially in the ballistic and quasi-ballistic regimes. Here, we focus on the inverse problem of 3D qPAT of blood oxygenation and investigate the application of the Monte-Carlo method in a model-based inversion scheme. A forward model of the light transport based on the MCX simulator and acoustic propagation modeled by the k-Wave toolbox was used to generate a PA image data set acquired in a tissue phantom over a planar detection geometry. The combination of the optical and acoustic models is shown to account for limited-view artifacts. In addition, the errors in the fluence due to, for example, partial volume artifacts and absorbers immediately adjacent to the region of interest are investigated. To accomplish large-scale inversions in 3D, the number of degrees of freedom is reduced by applying image segmentation to the initial pressure distribution to extract a limited number of regions with homogeneous optical parameters. The absorber concentration in the tissue phantom was estimated using a coordinate descent parameter search based on the comparison between measured and modeled PA spectra. The estimated relative concentrations using this approach lie within 5 \% compared to the known concentrations. Finally, we discuss the feasibility of this approach to recover the blood oxygenation from experimental data.}, language = {en} } @misc{KlindtBaumProhaskaetal., author = {Klindt, Marco and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {iCon.text - a customizable iPad app for kiosk applications in museum exhibitions}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17731}, abstract = {We present iCon.text, a kiosk platform for the iPad centered around artefacts, whose content and layout can be tailored without programming skills for specific museum exhibitions. The central metaphor to access information is a virtual postcard with one front and a customizable number of back sides that provide details about exhibits to museum visitors in textual and image form. Back sides can link to others cards. Access to these postcards is possible through one or more navigation views that can be navigated to from a navigation bar. The entry point to the application is designed as a multitouch interactive pile of cards in a playful manner that allows visitors of any age an easy approach to the presentation and interaction metaphor. To directly access a certain postcard, a mosaic view can be uitilized to provide an overview about all available exhibits. A category view groups postcards into themes. Locating artefacts on a zoomable map or exhibition floor plan allows for conveying information about spatial contexts between different objects and their location. Furthermore, contexts can be illustrated with a two stage view comprising an overview and corresponding detail views to provide further insights into the spatial, temporal, and thematic contexts of artefacts. The application scaffolding allows the design of bilingual presentations to support exhibitions with an international audience. The logo of the presenting institution or exhibition can be incorporated to display the the kiosk's corporate design branding and to access an imprint or further informations. Usage is logged into files to provide a basis for extracting statistical information about the usage. The details about the exhibits are presented as images and as such impose no limit to the design choices made by the content provider or exhibition designer. The application (enhanced with a panoramic view) has been integrated successfully into a large special exhibition about the ancient city of Pergamon 2011/2012 at the Pergamon Museum Berlin within the interdisciplinary project "Berlin Sculpture Network".}, language = {en} } @misc{WeberTranfieldHoeoegetal., author = {Weber, Britta and Tranfield, Erin M. and H{\"o}{\"o}g, Johanna L. and Baum, Daniel and Antony, Claude and Hyman, Tony and Verbavatz, Jean-Marc and Prohaska, Steffen}, title = {Automated stitching of microtubule centerlines across serial electron tomograms}, issn = {1438-0064}, doi = {10.1371/journal.pone.0113222}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-52958}, abstract = {Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.}, language = {en} } @misc{HoerthBaumKnoeteletal., author = {Hoerth, Rebecca M. and Baum, Daniel and Kn{\"o}tel, David and Prohaska, Steffen and Willie, Bettina M. and Duda, Georg and Hege, Hans-Christian and Fratzl, Peter and Wagermaier, Wolfgang}, title = {Registering 2D and 3D Imaging Data of Bone during Healing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53426}, abstract = {Purpose/Aims of the Study: Bone's hierarchical structure can be visualized using a variety of methods. Many techniques, such as light and electron microscopy generate two-dimensional (2D) images, while micro computed tomography (μCT) allows a direct representation of the three-dimensional (3D) structure. In addition, different methods provide complementary structural information, such as the arrangement of organic or inorganic compounds. The overall aim of the present study is to answer bone research questions by linking information of different 2D and 3D imaging techniques. A great challenge in combining different methods arises from the fact that they usually reflect different characteristics of the real structure. Materials and Methods: We investigated bone during healing by means of μCT and a couple of 2D methods. Backscattered electron images were used to qualitatively evaluate the tissue's calcium content and served as a position map for other experimental data. Nanoindentation and X-ray scattering experiments were performed to visualize mechanical and structural properties. Results: We present an approach for the registration of 2D data in a 3D μCT reference frame, where scanning electron microscopies serve as a methodic link. Backscattered electron images are perfectly suited for registration into μCT reference frames, since both show structures based on the same physical principles. We introduce specific registration tools that have been developed to perform the registration process in a semi-automatic way. Conclusions: By applying this routine, we were able to exactly locate structural information (e.g. mineral particle properties) in the 3D bone volume. In bone healing studies this will help to better understand basic formation, remodeling and mineralization processes.}, language = {en} } @misc{OezelKulkarniHasanetal., author = {{\"O}zel, M. Neset and Kulkarni, Abhishek and Hasan, Amr and Brummer, Josephine and Moldenhauer, Marian and Daumann, Ilsa-Maria and Wolfenberg, Heike and Dercksen, Vincent J. and Kiral, F. Ridvan and Weiser, Martin and Prohaska, Steffen and von Kleist, Max and Hiesinger, Peter Robin}, title = {Serial synapse formation through filopodial competition for synaptic seeding factors}, issn = {1438-0064}, doi = {10.1016/j.devcel.2019.06.014}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74397}, abstract = {Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a 'serial synapse formation' model, where at any time point only a single 'synaptogenic' filopodium suppresses the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization and reduced synapse formation, which is sufficient to cause the destabilization of entire axon terminals. Our model provides a filopodial 'winner-takes-all' mechanism that ensures the formation of an appropriate number of synapses.}, language = {en} } @article{OzelKulkarniHasanetal., author = {Ozel, Mehmet Neset and Kulkarni, Abhishek and Hasan, Amr and Brummer, Josephine and Moldenhauer, Marian and Daumann, Ilsa-Maria and Wolfenberg, Heike and Dercksen, Vincent J. and Kiral, Ferdi Ridvan and Weiser, Martin and Prohaska, Steffen and von Kleist, Max and Hiesinger, Peter Robin}, title = {Serial synapse formation through filopodial competition for synaptic seeding factors}, series = {Developmental Cell}, volume = {50}, journal = {Developmental Cell}, number = {4}, doi = {10.1016/j.devcel.2019.06.014}, pages = {447 -- 461}, abstract = {Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a 'serial synapse formation' model, where at any time point only a single 'synaptogenic' filopodium suppresses the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization and reduced synapse formation, which is sufficient to cause the destabilization of entire axon terminals. Our model provides a filopodial 'winner-takes-all' mechanism that ensures the formation of an appropriate number of synapses.}, language = {en} } @article{LindowBruenigDercksenetal., author = {Lindow, Norbert and Br{\"u}nig, Florian and Dercksen, Vincent J. and Fabig, Gunar and Kiewisz, Robert and Redemann, Stefanie and M{\"u}ller-Reichert, Thomas and Prohaska, Steffen and Baum, Daniel}, title = {Semi-automatic stitching of filamentous structures in image stacks from serial-section electron tomography}, series = {Journal of Microscopy}, volume = {284}, journal = {Journal of Microscopy}, number = {1}, doi = {10.1111/jmi.13039}, pages = {25 -- 44}, abstract = {We present a software-assisted workflow for the alignment and matching of filamentous structures across a three-dimensional (3D) stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After the computation of an initial automatic matching, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. Supported by a visual quality assessment of regions that have been already inspected, this allows a trade-off between quality and manual labor. The software tool was developed in an interdisciplinary collaboration between computer scientists and cell biologists to investigate cell division by quantitative 3D analysis of microtubules (MTs) in both mitotic and meiotic spindles. For this, each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. In practice, automatic stitching alone provides only an incomplete solution, because large physical distortions and a low signal-to-noise ratio often cause experimental difficulties. To derive 3D models of spindles despite dealing with imperfect data related to sample preparation and subsequent data collection, semi-automatic validation and correction is required to remove stitching mistakes. However, due to the large number of MTs in spindles (up to 30k) and their resulting dense spatial arrangement, a naive inspection of each MT is too time-consuming. Furthermore, an interactive visualization of the full image stack is hampered by the size of the data (up to 100 GB). Here, we present a specialized, interactive, semi-automatic solution that considers all requirements for large-scale stitching of filamentous structures in serial-section image stacks. To the best of our knowledge, it is the only currently available tool which is able to process data of the type and size presented here. The key to our solution is a careful design of the visualization and interaction tools for each processing step to guarantee real-time response, and an optimized workflow that efficiently guides the user through datasets. The final solution presented here is the result of an iterative process with tight feedback loops between the involved computer scientists and cell biologists.}, language = {en} } @article{HoerthBaumKnoeteletal., author = {Hoerth, Rebecca M. and Baum, Daniel and Kn{\"o}tel, David and Prohaska, Steffen and Willie, Bettina M. and Duda, Georg and Hege, Hans-Christian and Fratzl, Peter and Wagermaier, Wolfgang}, title = {Registering 2D and 3D Imaging Data of Bone during Healing}, series = {Connective Tissue Research}, volume = {56}, journal = {Connective Tissue Research}, number = {2}, publisher = {Taylor \& Francis}, doi = {10.3109/03008207.2015.1005210}, pages = {133 -- 143}, language = {en} }