@article{Le BodicPfetschPavelkaetal.2018, author = {Le Bodic, P. and Pfetsch, Marc and Pavelka, J. and Pokutta, Sebastian}, title = {Solving MIPs via Scaling-based Augmentation}, volume = {27}, journal = {Discrete Optimization}, arxiv = {http://arxiv.org/abs/1509.03206}, pages = {1 -- 25}, year = {2018}, language = {en} } @inproceedings{BorndoerferGroetschelPfetsch2008, author = {Bornd{\"o}rfer, Ralf and Gr{\"o}tschel, Martin and Pfetsch, Marc}, title = {Models for Line Planning in Public Transport}, volume = {600}, booktitle = {Computer-aided Systems in Public Transport (CASPT 2004)}, editor = {Hickman, Mark and Mirchandani, Pitu and Voß, Stefan}, publisher = {Springer-Verlag}, doi = {10.1007/978-3-540-73312-6_18}, pages = {363 -- 378}, year = {2008}, language = {en} } @article{BorndoerferGroetschelPfetsch2007, author = {Bornd{\"o}rfer, Ralf and Gr{\"o}tschel, Martin and Pfetsch, Marc}, title = {A Column-Generation Approach to Line Planning in Public Transport}, volume = {41}, journal = {Transportation Science (INFORMS)}, number = {1}, doi = {10.1287/trsc.1060.0161}, pages = {123 -- 132}, year = {2007}, language = {en} } @article{BorndoerferKarbsteinPfetsch2012, author = {Bornd{\"o}rfer, Ralf and Karbstein, Marika and Pfetsch, Marc}, title = {Models for Fare Planning in Public Transport}, volume = {160}, journal = {Discrete Applied Mathematics}, number = {18}, doi = {10.1016/j.dam.2012.02.027}, pages = {2591 -- 2605}, year = {2012}, language = {en} } @article{KochSchmidtHilleretal.2020, author = {Koch, Thorsten and Schmidt, Martin and Hiller, Benjamin and Pfetsch, Marc and Geißler, Bj{\"o}rn and Henrion, Ren{\´e} and Joormann, Imke and Martin, Alexander and Morsi, Antonio and R{\"o}misch, Werner and Schewe, Lars and Schultz, R{\"u}diger}, title = {Capacity Evaluation for Large-Scale Gas Networks}, volume = {35}, journal = {German Success Stories in Industrial Mathematics}, isbn = {978-3-030-81454-0}, doi = {10.1007/978-3-030-81455-7}, pages = {23 -- 28}, year = {2020}, language = {en} } @article{HendelAndersonLeBodicetal.2021, author = {Hendel, Gregor and Anderson, Daniel and Le Bodic, Pierre and Pfetsch, Marc}, title = {Estimating the Size of Branch-And-Bound Trees}, journal = {INFORMS Journal on Computing}, doi = {10.1287/ijoc.2021.1103}, year = {2021}, abstract = {This paper investigates the estimation of the size of Branch-and-Bound (B\&B) trees for solving mixed-integer programs. We first prove that the size of the B\&B tree cannot be approximated within a factor of~2 for general binary programs, unless P equals NP. Second, we review measures of the progress of the B\&B search, such as the gap, and propose a new measure, which we call leaf frequency. We study two simple ways to transform these progress measures into B\&B tree size estimates, either as a direct projection, or via double-exponential smoothing, a standard time-series forecasting technique. We then combine different progress measures and their trends into nontrivial estimates using Machine Learning techniques, which yields more precise estimates than any individual measure. The best method we have identified uses all individual measures as features of a random forest model. In a large computational study, we train and validate all methods on the publicly available MIPLIB and Coral general purpose benchmark sets. On average, the best method estimates B\&B tree sizes within a factor of 3 on the set of unseen test instances even during the early stage of the search, and improves in accuracy as the search progresses. It also achieves a factor 2 over the entire search on each out of six additional sets of homogeneous instances we have tested. All techniques are available in version 7 of the branch-and-cut framework SCIP.}, language = {en} } @inproceedings{PfetschPokutta2020, author = {Pfetsch, Marc and Pokutta, Sebastian}, title = {IPBoost - Non-Convex Boosting via Integer Programming}, booktitle = {Proceedings of ICML}, arxiv = {http://arxiv.org/abs/2002.04679}, year = {2020}, language = {en} } @inproceedings{ThuerckSofranacPfetschetal.2023, author = {Thuerck, Daniel and Sofranac, Boro and Pfetsch, Marc and Pokutta, Sebastian}, title = {Learning cuts via enumeration oracles}, booktitle = {Proceedings of Conference on Neural Information Processing Systems}, year = {2023}, language = {en} } @inproceedings{BorndoerferNeumannPfetsch2009, author = {Bornd{\"o}rfer, Ralf and Neumann, Marika and Pfetsch, Marc}, title = {Line Planning and Connectivity}, booktitle = {Models and Algorithms for Optimization in Logistics}, number = {09261}, editor = {Barnhart, Cynthia and Clausen, Uwe and Lauther, Ulrich and M{\"o}hring, Rolf}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany}, address = {Dagstuhl, Germany}, year = {2009}, language = {en} } @incollection{BorndoerferNeumannPfetsch2006, author = {Bornd{\"o}rfer, Ralf and Neumann, Marika and Pfetsch, Marc}, title = {Optimal Fares for Public Transport}, booktitle = {Operations Research Proceedings 2005}, editor = {Haasis, Hans-Dietrich and Kopfer, Herbert and Sch{\"o}nberger, J{\"o}rn}, publisher = {Springer-Verlag}, pages = {29 -- 36}, year = {2006}, language = {en} } @article{PfetschFuegenschuhGeissleretal.2014, author = {Pfetsch, Marc and F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Geißler, Nina and Gollmer, Ralf and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Morsi, Antonio and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Vigerske, Stefan and Willert, Bernhard}, title = {Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions}, journal = {Optimization Methods and Software}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2014.888426}, year = {2014}, abstract = {In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.}, language = {en} } @article{BorndoerferKarbsteinPfetsch2013, author = {Bornd{\"o}rfer, Ralf and Karbstein, Marika and Pfetsch, Marc}, title = {The Steiner connectivity problem}, volume = {142}, journal = {Mathematical Programming A}, number = {1}, doi = {10.1007/s10107-012-0564-5}, pages = {133 -- 167}, year = {2013}, language = {en} } @inproceedings{BertholdHeinzPfetschetal.2011, author = {Berthold, Timo and Heinz, Stefan and Pfetsch, Marc and Vigerske, Stefan}, title = {Large Neighborhood Search beyond MIP}, booktitle = {Proceedings of the 9th Metaheuristics International Conference (MIC 2011)}, isbn = {978-88-900984-3-7}, pages = {51 -- 60}, year = {2011}, abstract = {Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics.}, language = {en} } @article{BorndoerferGroetschelPfetsch2006, author = {Bornd{\"o}rfer, Ralf and Gr{\"o}tschel, Martin and Pfetsch, Marc}, title = {Public transport to the fORe}, journal = {OR/MS Today}, pages = {30 -- 40}, year = {2006}, language = {en} } @incollection{KochPfetschRoevekamp2015, author = {Koch, Thorsten and Pfetsch, Marc and R{\"o}vekamp, Jessica}, title = {Introduction}, booktitle = {Evaluating Gas Network Capacities}, publisher = {Society for Industrial and Applied Mathematics}, isbn = {9781611973686}, pages = {3 -- 16}, year = {2015}, language = {en} } @inproceedings{MartinGeisslerHeynetal.2011, author = {Martin, Alexander and Geißler, Bj{\"o}rn and Heyn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, booktitle = {Optimierung in der Energiewirtschaft}, publisher = {VDI-Verlag, D{\"u}sseldorf}, pages = {105 -- 114}, year = {2011}, language = {en} } @incollection{BargmannEbbersHeineckeetal.2015, author = {Bargmann, Dagmar and Ebbers, Mirko and Heinecke, Nina and Koch, Thorsten and K{\"u}hl, Veronika and Pelzer, Antje and Pfetsch, Marc and R{\"o}vekamp, Jessica and Spreckelsen, Klaus}, title = {State-of-the-art in evaluating gas network capacities}, booktitle = {Evaluating Gas Network Capacities}, publisher = {Society for Industrial and Applied Mathematics}, isbn = {9781611973686}, pages = {65 -- 84}, year = {2015}, language = {en} } @incollection{ScheweKochMartinetal.2015, author = {Schewe, Lars and Koch, Thorsten and Martin, Alexander and Pfetsch, Marc}, title = {Mathematical optimization for evaluating gas network capacities}, booktitle = {Evaluating Gas Network Capacities}, publisher = {Society for Industrial and Applied Mathematics}, isbn = {9781611973686}, pages = {87 -- 102}, year = {2015}, language = {en} } @incollection{HillerHumpolaLehmannetal.2015, author = {Hiller, Benjamin and Humpola, Jesco and Lehmann, Thomas and Lenz, Ralf and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Willert, Bernhard}, title = {Computational results for validation of nominations}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, year = {2015}, abstract = {The different approaches to solve the validation of nomination problem presented in the previous chapters are evaluated computationally in this chapter. Each approach is analyzed individually, as well as the complete solvers for these problems. We demonstrate that the presented approaches can successfully solve large-scale real-world instances.}, language = {en} } @book{KochHillerPfetschetal.2015, author = {Koch, Thorsten and Hiller, Benjamin and Pfetsch, Marc and Schewe, Lars}, title = {Evaluating Gas Network Capacities}, publisher = {SIAM}, isbn = {978-1-611973-68-6}, pages = {xvi + 376 pages}, year = {2015}, language = {en} }