@misc{PfetschBorndoerfer2005, author = {Pfetsch, Marc and Bornd{\"o}rfer, Ralf}, title = {Routing in Line Planning for Public Transportation}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8706}, number = {05-36}, year = {2005}, abstract = {The line planning problem is one of the fundamental problems in strategic planning of public and rail transport. It consists in finding lines and corresponding frequencies in a network such that a giv en demand can be satisfied. There are two objectives. Passengers want to minimize travel times, the transport company wishes to minimize operating costs. We investigate three variants of a multi-commo dity flow model for line planning that differ with respect to passenger routings. The first model allows arbitrary routings, the second only unsplittable routings, and the third only shortest path rou tings with respect to the network. We compare these models theoretically and computationally on data for the city of Potsdam.}, language = {en} } @misc{JoswigPfetsch2004, author = {Joswig, Michael and Pfetsch, Marc}, title = {Computing Optimal Morse Matchings}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8120}, number = {04-37}, year = {2004}, abstract = {Morse matchings capture the essential structural information of discrete Morse functions. We show that computing optimal Morse matchings is NP-hard and give an integer programming formulation for the problem. Then we present polyhedral results for the corresponding polytope and report on computational results.}, language = {en} } @misc{KaibelPeinhardtPfetsch2006, author = {Kaibel, Volker and Peinhardt, Matthias and Pfetsch, Marc}, title = {Orbitopal Fixing}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9422}, number = {06-48}, year = {2006}, abstract = {The topic of this paper are integer programming models in which a subset of 0/1-variables encode a partitioning of a set of objects into disjoint subsets. Such models can be surprisingly hard to solve by branch-and-cut algorithms if the permutation of the subsets of the partition is irrelevant. This kind of symmetry unnecessarily blows up the branch-and-cut tree. We present a general tool, called orbitopal fixing, for enhancing the capabilities of branch-and-cut algorithms in solving this kind of symmetric integer programming models. We devise a linear time algorithm that, applied at each node of the branch-and-cut tree, removes redundant parts of the tree produced by the above mentioned permutations. The method relies on certain polyhedra, called orbitopes, which have been investigated in (Kaibel and Pfetsch (2006)). However, it does not add inequalities to the model, and thus, it does not increase the difficulty of solving the linear programming relaxations. We demonstrate the computational power of orbitopal fixing at the example of a graph partitioning problem motivated from frequency planning in mobile telecommunication networks.}, language = {en} } @misc{JokarPfetsch2007, author = {Jokar, Sadegh and Pfetsch, Marc}, title = {Exact and Approximate Sparse Solutions of Underdetermined Linear Equations}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9488}, number = {07-05}, year = {2007}, abstract = {In this paper, we empirically investigate the NP-hard problem of finding sparse solutions to linear equation systems, i.e., solutions with as few nonzeros as possible. This problem has received considerable interest in the sparse approximation and signal processing literature, recently. We use a branch-and-cut approach via the maximum feasible subsystem problem to compute optimal solutions for small instances and investigate the uniqueness of the optimal solutions. We furthermore discuss five (modifications of) heuristics for this problem that appear in different parts of the literature. For small instances, the exact optimal solutions allow us to evaluate the quality of the heuristics, while for larger instances we compare their relative performance. One outcome is that the basis pursuit heuristic performs worse, compared to the other methods. Among the best heuristics are a method due to Mangasarian and a bilinear approach.}, language = {en} } @misc{KaibelPfetsch2006, author = {Kaibel, Volker and Pfetsch, Marc}, title = {Packing and Partitioning Orbitopes}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9104}, number = {06-17}, year = {2006}, abstract = {We introduce orbitopes as the convex hulls of 0/1-matrices that are lexicographically maximal subject to a group acting on the columns. Special cases are packing and partitioning orbitopes, which arise from restrictions to matrices with at most or exactly one 1-entry in each row, respectively. The goal of investigating these polytopes is to gain insight into ways of breaking certain symmetries in integer programs by adding constraints, e.g., for a well-known formulation of the graph coloring problem. We provide a thorough polyhedral investigation of packing and partitioning orbitopes for the cases in which the group acting on the columns is the cyclic group or the symmetric group. Our main results are complete linear inequality descriptions of these polytopes by facet-defining inequalities. For the cyclic group case, the descriptions turn out to be totally unimodular, while for the symmetric group case, both the description and the proof are more involved. The associated separation problems can be solved in linear time.}, language = {en} } @misc{BorndoerferGroetschelPfetsch2005, author = {Bornd{\"o}rfer, Ralf and Gr{\"o}tschel, Martin and Pfetsch, Marc}, title = {A Column-Generation Approach to Line Planning in Public Transport}, doi = {/10.1287/trsc.1060.0161}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8522}, number = {05-18}, year = {2005}, abstract = {The line planning problem is one of the fundamental problems in strategic planning of public and rail transport. It consists in finding lines and corresponding frequencies in a transport network such that a given travel demand can be satisfied. There are (at least) two objectives. The transport company wishes to minimize operating costs, the passengers want to minimize travel times. We propose a n ew multi-commodity flow model for line planning. Its main features, in comparison to existing models, are that the passenger paths can be freely routed and that the lines are generated dynamically. We discuss properties of this model and investigate its complexity. Results with data for the city of Potsdam, Germany, are reported.}, language = {en} } @misc{BorndoerferGroetschelPfetsch2005, author = {Bornd{\"o}rfer, Ralf and Gr{\"o}tschel, Martin and Pfetsch, Marc}, title = {Public Transport to the fORe!}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8562}, number = {05-22}, year = {2005}, abstract = {Can OR methods help the public transport industry to break even? The article gives evidence that there exist significant potentials in this direction, which can be harnessed by a combination of modern mathematical methods and local planning knowledge. Many of the planning steps in public transport are classical combinatorial problems, which can be solved in unprecedented size and quality due the rapid progress in large-scale optimization. Three examples on vehicle scheduling, duty scheduling, and integrated vehicle and duty scheduling illustrate the level that has been reached and the improvements that can be achieved today. Extensions of such methods to further questions of strategic, online, and market-oriented planning are currently investigated. In this way, OR can make a significant contribution to answer the basic but extremely difficult question ``What is a good public transport network?.}, language = {en} } @article{Le BodicPfetschPavelkaetal.2018, author = {Le Bodic, P. and Pfetsch, Marc and Pavelka, J. and Pokutta, Sebastian}, title = {Solving MIPs via Scaling-based Augmentation}, volume = {27}, journal = {Discrete Optimization}, arxiv = {http://arxiv.org/abs/1509.03206}, pages = {1 -- 25}, year = {2018}, language = {en} } @inproceedings{BorndoerferGroetschelPfetsch2008, author = {Bornd{\"o}rfer, Ralf and Gr{\"o}tschel, Martin and Pfetsch, Marc}, title = {Models for Line Planning in Public Transport}, volume = {600}, booktitle = {Computer-aided Systems in Public Transport (CASPT 2004)}, editor = {Hickman, Mark and Mirchandani, Pitu and Voß, Stefan}, publisher = {Springer-Verlag}, doi = {10.1007/978-3-540-73312-6_18}, pages = {363 -- 378}, year = {2008}, language = {en} } @article{BorndoerferGroetschelPfetsch2007, author = {Bornd{\"o}rfer, Ralf and Gr{\"o}tschel, Martin and Pfetsch, Marc}, title = {A Column-Generation Approach to Line Planning in Public Transport}, volume = {41}, journal = {Transportation Science (INFORMS)}, number = {1}, doi = {10.1287/trsc.1060.0161}, pages = {123 -- 132}, year = {2007}, language = {en} } @misc{GamrathAndersonBestuzhevaetal.2020, author = {Gamrath, Gerald and Anderson, Daniel and Bestuzheva, Ksenia and Chen, Wei-Kun and Eifler, Leon and Gasse, Maxime and Gemander, Patrick and Gleixner, Ambros and Gottwald, Leona and Halbig, Katrin and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Le Bodic, Pierre and Maher, Stephen J. and Matter, Frederic and Miltenberger, Matthias and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Tawfik, Christine and Vigerske, Stefan and Wegscheider, Fabian and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 7.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78023}, year = {2020}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders' decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders' decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @misc{HendelAndersonLeBodicetal.2020, author = {Hendel, Gregor and Anderson, Daniel and Le Bodic, Pierre and Pfetsch, Marc}, title = {Estimating the Size of Branch-And-Bound Trees}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78144}, year = {2020}, abstract = {This paper investigates the estimation of the size of Branch-and-Bound (B\&B) trees for solving mixed-integer programs. We first prove that the size of the B\&B tree cannot be approximated within a factor of~2 for general binary programs, unless P equals NP. Second, we review measures of the progress of the B\&B search, such as the gap, and propose a new measure, which we call leaf frequency. We study two simple ways to transform these progress measures into B\&B tree size estimates, either as a direct projection, or via double-exponential smoothing, a standard time-series forecasting technique. We then combine different progress measures and their trends into nontrivial estimates using Machine Learning techniques, which yields more precise estimates than any individual measure. The best method we have identified uses all individual measures as features of a random forest model. In a large computational study, we train and validate all methods on the publicly available MIPLIB and Coral general purpose benchmark sets. On average, the best method estimates B\&B tree sizes within a factor of 3 on the set of unseen test instances even during the early stage of the search, and improves in accuracy as the search progresses. It also achieves a factor 2 over the entire search on each out of six additional sets of homogeneous instances we have tested. All techniques are available in version 7 of the branch-and-cut framework SCIP.}, language = {en} } @article{BorndoerferKarbsteinPfetsch2012, author = {Bornd{\"o}rfer, Ralf and Karbstein, Marika and Pfetsch, Marc}, title = {Models for Fare Planning in Public Transport}, volume = {160}, journal = {Discrete Applied Mathematics}, number = {18}, doi = {10.1016/j.dam.2012.02.027}, pages = {2591 -- 2605}, year = {2012}, language = {en} } @misc{GleixnerEiflerGallyetal.2017, author = {Gleixner, Ambros and Eifler, Leon and Gally, Tristan and Gamrath, Gerald and Gemander, Patrick and Gottwald, Robert Lion and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Viernickel, Jan Merlin and Vigerske, Stefan and Weninger, Dieter and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 5.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66297}, year = {2017}, abstract = {This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 \% faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 \% faster overall and 23 \% faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.}, language = {en} } @article{KochSchmidtHilleretal.2020, author = {Koch, Thorsten and Schmidt, Martin and Hiller, Benjamin and Pfetsch, Marc and Geißler, Bj{\"o}rn and Henrion, Ren{\´e} and Joormann, Imke and Martin, Alexander and Morsi, Antonio and R{\"o}misch, Werner and Schewe, Lars and Schultz, R{\"u}diger}, title = {Capacity Evaluation for Large-Scale Gas Networks}, volume = {35}, journal = {German Success Stories in Industrial Mathematics}, isbn = {978-3-030-81454-0}, doi = {10.1007/978-3-030-81455-7}, pages = {23 -- 28}, year = {2020}, language = {en} } @misc{GleixnerBastubbeEifleretal.2018, author = {Gleixner, Ambros and Bastubbe, Michael and Eifler, Leon and Gally, Tristan and Gamrath, Gerald and Gottwald, Robert Lion and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schl{\"o}sser, Franziska and Schubert, Christoph and Serrano, Felipe and Shinano, Yuji and Viernickel, Jan Merlin and Walter, Matthias and Wegscheider, Fabian and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 6.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69361}, year = {2018}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders' decomposition in a generic framework. GCG's detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders' framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @misc{BorndoerferGroetschelPfetsch2004, author = {Bornd{\"o}rfer, Ralf and Gr{\"o}tschel, Martin and Pfetsch, Marc}, title = {Models for Line Planning in Public Transport}, doi = {10.1007/978-3-540-73312-6_18}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7854}, number = {04-10}, year = {2004}, abstract = {The \emph{line planning problem} is one of the fundamental problems in strategic planning of public and rail transport. It consists of finding lines and corresponding frequencies in a public transport network such that a given travel demand can be satisfied. There are (at least) two objectives. The transport company wishes to minimize its operating cost; the passengers request short travel times. We propose two new multi-commodity flow models for line planning. Their main features, in comparison to existing models, are that the passenger paths can be freely routed and that the lines are generated dynamically.}, language = {en} } @misc{Pfetsch2005, author = {Pfetsch, Marc}, title = {A Branch-And-Cut for the Maximum Feasible Subsystem Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8797}, number = {05-46}, year = {2005}, abstract = {We present a branch-and-cut algorithm for the NP-hard maximum feasible subsystem problem: For a given infeasible linear inequality system, determine a feasible subsystem containing as many inequalities as possible. The complementary problem, where one has to remove as few inequalities as possible in order to render the system feasible, can be formulated as a set covering problem. The rows of this formulation correspond to irreducible infeasible subsystems, which can be exponentially many. The main issue of a branch-and-cut algorithm for MaxFS is to efficiently find such infeasible subsystems. We present three heuristics for the corresponding NP-hard separation problem and discuss further cutting planes. This paper contains an extensive computational study of our implementation on a variety of instances arising in a number of applications.}, language = {en} } @misc{HarksHeinzPfetsch2006, author = {Harks, Tobias and Heinz, Stefan and Pfetsch, Marc}, title = {Competitive Online Multicommodity Routing}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9212}, number = {06-27}, year = {2006}, abstract = {We study online multicommodity minimum cost routing problems in networks, where commodities have to be routed sequentially. Arcs are equipped with load dependent price functions defining the routing weights. We discuss an online algorithm that routes each commodity by minimizing a convex cost function that depends on the demands that are previously routed. We present a competitive analysis of this algorithm showing that for affine linear price functions this algorithm is \$4K/2+K\$-competitive, where \$K\$ is the number of commodities. For the parallel arc case this algorithm is optimal. Without restrictions on the price functions and network, no algorithm is competitive. Finally, we investigate a variant in which the demands have to be routed unsplittably.}, language = {en} } @misc{HarksHeinzPfetsch2007, author = {Harks, Tobias and Heinz, Stefan and Pfetsch, Marc}, title = {Competitive Online Multicommodity Routing}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9599}, number = {07-16}, year = {2007}, abstract = {In this paper we study online multicommodity routing problems in networks, in which commodities have to be routed sequentially. The flow of each commodity can be split on several paths. Arcs are equipped with load dependent price functions defining routing costs, which have to be minimized. We discuss a greedy online algorithm that routes each commodity by minimizing a convex cost function that only depends on the demands previously routed. We present a competitive analysis of this algorithm showing that for affine linear price functions this algorithm is 4K2 (1+K)2 -competitive, where K is the number of commodities. For the single-source single-destination case, this algorithm is optimal. Without restrictions on the price functions and network, no algorithm is competitive. Finally, we investigate a variant in which the demands have to be routed unsplittably.}, language = {en} }