@misc{PaetschStallingKorzen1997, author = {Paetsch, Olaf and Stalling, Detlev and Korzen, Manfred}, title = {Online-Visualisierung von Brandversuchen an Bauteilen}, publisher = {Konrad-Zuse-Zentrum f{\"u}r Informationstechnik, Berlin (ZIB) / Bundesanstalt f{\"u}r Materialfoschung und -pr{\"u}fung (BAM) Berlin}, year = {1997}, language = {en} } @inproceedings{KorzenSchrieverZieneretal.1996, author = {Korzen, Manfred and Schriever, Robert and Ziener, Kai-Uwe and Paetsch, Olaf and Zumbusch, Gerd}, title = {Real-Time 3-D Visualization of Surface Temperature Fields Measured by Thermocouples on Steel Strutures in Fire Engineering}, series = {Proc. Int. Symposium Local Strain and Temperature Measurements in Non-Uniform Fields at Elevated Temperatures}, booktitle = {Proc. Int. Symposium Local Strain and Temperature Measurements in Non-Uniform Fields at Elevated Temperatures}, editor = {Ziebs, J. al.}, publisher = {Woodhead}, address = {England}, pages = {253 -- 262}, year = {1996}, language = {en} } @inproceedings{JacomeEggelerPoethkowetal., author = {J{\´a}come, Leonardo Agudo and Eggeler, Gunter and P{\"o}thkow, Kai and Paetsch, Olaf and Hege, Hans-Christian}, title = {Three-Dimensional Characterization of Superdislocation Interactions in the High Temperature and Low Stress Creep Regime of Ni-Base Superalloy Single Crystals}, series = {Proceedings of CREEP 2015 - 13th International Conference on Creep and Fracture of Engineering Materials and Structures, May 31 - June 4, 2015, Toulouse, France}, booktitle = {Proceedings of CREEP 2015 - 13th International Conference on Creep and Fracture of Engineering Materials and Structures, May 31 - June 4, 2015, Toulouse, France}, pages = {16 -- 17}, abstract = {Monocrystaline Ni-base superalloys are the material of choice for first row blades in jet engine gas turbines. Using a novel visualization tool for 3D reconstruction and visualization of dislocation line segments from stereo-pairs of scanning transmission electron microscopies, the superdislocation substructures in Ni-base superalloy LEK 94 (crept to ε = 26\%) are characterized. Probable scenarios are discussed, how these dislocation substructures form.}, language = {en} } @inproceedings{EhrigGoebbelsMeineletal.2011, author = {Ehrig, Karsten and Goebbels, J{\"u}rgen and Meinel, Dietmar and Paetsch, Olaf and Prohaska, Steffen and Zobel, Valentin}, title = {Comparison of Crack Detection Methods for Analyzing Damage Processes in Concrete with Computed Tomography}, series = {International Symposium on Digital Industrial Radiology and Computed Tomography}, booktitle = {International Symposium on Digital Industrial Radiology and Computed Tomography}, year = {2011}, language = {en} } @article{AgudoJacomeHegePaetschetal., author = {Agudo J{\´a}come, Leonardo and Hege, Hans-Christian and Paetsch, Olaf and P{\"o}thkow, Kai}, title = {Three-dimensional reconstruction and quantification of dislocation substructures from transmission electron microscopy stereo pairs}, series = {Ultramicroscopy}, volume = {195}, journal = {Ultramicroscopy}, doi = {10.1016/j.ultramic.2018.08.015}, pages = {157 -- 170}, abstract = {A great amount of material properties is strongly influenced by dislocations, the carriers of plastic deformation. It is therefore paramount to have appropriate tools to quantify dislocation substructures with regard to their features, e.g., dislocation density, Burgers vectors or line direction. While the transmission electron microscope (TEM) has been the most widely-used equipment implemented to investigate dislocations, it usually is limited to the two-dimensional (2D) observation of three-dimensional (3D) structures. We reconstruct, visualize and quantify 3D dislocation substructure models from only two TEM images (stereo pairs) and assess the results. The reconstruction is based on the manual interactive tracing of filiform objects on both images of the stereo pair. The reconstruction and quantification method are demonstrated on dark field (DF) scanning (S)TEM micrographs of dislocation substructures imaged under diffraction contrast conditions. For this purpose, thick regions (>300 nm) of TEM foils are analyzed, which are extracted from a Ni-base superalloy single crystal after high temperature creep deformation. It is shown how the method allows 3D quantification from stereo pairs in a wide range of tilt conditions, achieving line length and orientation uncertainties of 3\% and 7°, respectively. Parameters that affect the quality of such reconstructions are discussed.}, language = {en} } @misc{AgudoJacomeHegePaetschetal., author = {Agudo J{\´a}come, Leonardo and Hege, Hans-Christian and Paetsch, Olaf and P{\"o}thkow, Kai}, title = {Three-Dimensional Reconstruction and Quantification of Dislocation Substructures from Transmission Electron Microscopy Stereo-Pairs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-70339}, abstract = {A great amount of material properties is strongly influenced by dislocations, the carriers of plastic deformation. It is therefore paramount to have appropriate tools to quantify dislocation substructures with regard to their features, e.g., dislocation density, Burgers vectors or line direction. While the transmission electron microscope (TEM) has been the most widely-used equipment implemented to investigate dislocations, it usually is limited to the two-dimensional (2D) observation of three-dimensional (3D) structures. We reconstruct, visualize and quantify 3D dislocation substructure models from only two TEM images (stereo-pairs) and assess the results. The reconstruction is based on the manual interactive tracing of filiform objects on both images of the stereo-pair. The reconstruction and quantification method are demonstrated on dark field (DF) scanning (S)TEM micrographs of dislocation substructures imaged under diffraction contrast conditions. For this purpose, thick regions (> 300 nm) of TEM foils are analyzed, which are extracted from a Ni-base superalloy single crystal after high temperature creep deformation. It is shown how the method allows 3D quantification from stereo-pairs in a wide range of tilt conditions, achieving line length and orientation uncertainties of 3 \% and 7°, respectively. Parameters that affect the quality of such reconstructions are discussed.}, language = {en} }