@misc{AchterbergKochMartin, author = {Achterberg, Tobias and Koch, Thorsten and Martin, Alexander}, title = {Branching on History Information}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6990}, number = {02-32}, abstract = {Mixed integer programs (\$MIPs\$) are commonly solved with branch and bound algorithms based on linear programming. The success and the speed of the algorithm strongly depends on the strategy used to select the branching variables. Today's state-of-the-art strategy is called \emph{pseudocost branching} and uses information of previous branchings to determine the current branching. We propose a modification of \emph{pseudocost branching} which we call \emph{history branching}. This strategy has been implemented in \$SIP\$, a state-of-the-art \$MIP\$ solver. We give computational results that show the superiority of the new strategy.}, language = {en} } @misc{AchterbergKochMartin, author = {Achterberg, Tobias and Koch, Thorsten and Martin, Alexander}, title = {Branching rules revisited}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7886}, number = {04-13}, abstract = {Mixed integer programs are commonly solved with linear programming based branch-and-bound algorithms. The success of the algorithm strongly depends on the strategy used to select the variable to branch on. We present a new generalization called {\sl reliability branching} of today's state-of-the-art {\sl strong branching} and {\sl pseudocost branching} strategies for linear programming based branch-and-bound algorithms. After reviewing commonly used branching strategies and performing extensive computational studies we compare different parameter settings and show the superiority of our proposed newstrategy.}, language = {en} } @misc{AchterbergKochMartin, author = {Achterberg, Tobias and Koch, Thorsten and Martin, Alexander}, title = {MIPLIB 2003}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8625}, number = {05-28}, abstract = {This paper reports on the fourth version of the Mixed Integer Programming Library. Since ({\sc miplib}) is to provide a concise set of challenging problems, it became necessary to purge instances that became too easy. We present an overview of the 27 new problems and statistical data for all 60 instances.}, language = {en} } @misc{BixbyMartin, author = {Bixby, Robert E. and Martin, Alexander}, title = {Parallelizing the Dual Simplex Method}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2112}, number = {SC-95-45}, abstract = {We study the parallelization of the steepest-edge version of the dual simplex algorithm. Three different parallel implementations are examined, each of which is derived from the CPLEX dual simplex implementation. One alternative uses PVM, one general-purpose System V shared-memory constructs, and one the PowerC extension of C on a Silicon Graphics multi-processor. These versions were tested on different parallel platforms, including heterogeneous workstation clusters, Sun S20-502, Silicon Graphics multi-processors, and an IBM SP2. We report on our computational experience.}, language = {en} } @misc{BorndoerferEisenblaetterGroetscheletal., author = {Bornd{\"o}rfer, Ralf and Eisenbl{\"a}tter, Andreas and Gr{\"o}tschel, Martin and Martin, Alexander}, title = {The Orientation Model for Frequency Assignment Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5627}, number = {TR-98-01}, abstract = {Mobile telecommunication systems establish a large number of communication links with a limited number of available frequencies; reuse of the same or adjacent frequencies on neighboring links causes interference. The task to find an assignment of frequencies to channels with minimal interference is the frequency assignment problem. The frequency assignment problem is usually treated as a graph coloring problem where the number of colors is minimized, but this approach does not model interference minimization correctly. We give in this paper a new integer programming formulation of the frequency assignment problem, the orientation model, and develop a heuristic two-stage method to solve it. The algorithm iteratively solves an outer and an inner optimization problem. The outer problem decides for each pair of communication links which link gets the higher frequency and leads to an acyclic subdigraph problem with additional longest path restrictions. The inner problem to find an optimal assignment respecting an orientation leads to a min-cost flow problem.}, language = {en} } @misc{BorndoerferEisenblaetterGroetscheletal., author = {Bornd{\"o}rfer, Ralf and Eisenbl{\"a}tter, Andreas and Gr{\"o}tschel, Martin and Martin, Alexander}, title = {Frequency Assignment in Cellular Phone Networks}, doi = {10.1023/A:1018908907763}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3044}, number = {SC-97-35}, abstract = {We present a graph-theoretic model for the \emph{frequency assignment problem} in Cellular Phone Networks: Obeying several technical and legal restrictions, frequencies have to be assigned to transceivers so that interference is as small as possible. This optimization problem is NP-hard. Good approximation cannot be guaranteed, unless P = NP. We describe several assignment heuristics. These heuristics are simple and not too hard to implement. We give an assessment of the heuristics' efficiency and practical usefulness. For this purpose, typical instances of frequency assignment problems with up to 4240 transceivers and 75 frequencies of a German cellular phone network operator are used. The results are satisfying from a practitioner's point of view. The best performing heuristics were integrated into a network planning system used in practice.}, language = {en} } @misc{BorndoerferFerreiraMartin, author = {Bornd{\"o}rfer, Ralf and Ferreira, Carlos E. and Martin, Alexander}, title = {Matrix Decomposition by Branch-and-Cut}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2839}, number = {SC-97-14}, abstract = {In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so-called {\em bordered block diagonal form}. More precisely, given some matrix \$A\$, we try to assign as many rows as possible to some number of blocks of limited size such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the \%LP- and MIP-libraries \Netlib{} and MIPLIB can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem.}, language = {en} } @misc{BorndoerferFerreiraMartin, author = {Bornd{\"o}rfer, Ralf and Ferreira, Carlos E. and Martin, Alexander}, title = {Decomposing Matrices into Blocks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2849}, number = {SC-97-15}, abstract = {In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so-called {\em bordered block diagonal form}. More precisely, given some matrix \$A\$, we try to assign as many rows as possible to some number of blocks of limited size such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the LP- and MIP-libraries NETLIB and MITLIB can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem. In practice, however, one would use heuristics to find a good decomposition. We present several heuristic ideas and test their performance. Finally, we investigate the usefulness of optimal matrix decompositions into bordered block diagonal form for integer programming by using such decompositions to guide the branching process in a branch-and-cut code for general mixed integer programs.}, language = {en} } @misc{BorndoerferHoangKarbsteinetal., author = {Bornd{\"o}rfer, Ralf and Hoang, Nam-Dung and Karbstein, Marika and Koch, Thorsten and Martin, Alexander}, title = {How Many Steiner Terminals Can You Connect in 20 Years?}, issn = {1438-0064}, doi = {10.1007/978-3-642-38189-8_10}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42524}, abstract = {Steiner trees are constructed to connect a set of terminal nodes in a graph. This basic version of the Steiner tree problem is idealized, but it can effectively guide the search for successful approaches to many relevant variants, from both a theoretical and a computational point of view. This article illustrates the theoretical and algorithmic progress on Steiner tree type problems on two examples, the Steiner connectivity and the Steiner tree packing problem.}, language = {en} } @misc{BrunsGubeladzeHenketal., author = {Bruns, Winfried and Gubeladze, Joseph and Henk, Martin and Martin, Alexander and Weismantel, Robert}, title = {A counterexample to an integer analogue of Caratheodorys theorem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3718}, number = {SC-98-28}, abstract = {For \$n\geq 6\$ we provide a counterexample to the conjecture that every integral vector of a \$n\$-dimensional integral polyhedral pointed cone \$C\$ can be written as a nonnegative integral combination of at most \$n\$ elements of the Hilbert basis of \$C\$. In fact, we show that in general at least \$\lfloor 7/6 \cdot n \rfloor\$ elements of the Hilbert basis are needed.}, language = {en} } @misc{DahlMartinStoer, author = {Dahl, Geir and Martin, Alexander and Stoer, Mechthild}, title = {Routing through virtual paths in layered telecommunication networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2070}, number = {SC-95-41}, abstract = {We study a network configuration problem in telecommunications where one wants to set up paths in a capacitated network to accommodate given point-to-point traffic demand. The problem is formulated as an integer linear programming model where 0-1 variables represent different paths. An associated integral polytope is studied and different classes of facets are described. These results are used in a cutting plane algorithm. Computational results for some realistic problems are reported.}, language = {en} } @misc{DittelFuegenschuhMartin, author = {Dittel, Agnes and F{\"u}genschuh, Armin and Martin, Alexander}, title = {Polyhedral Aspects of Self-Avoiding Walks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12576}, number = {11-11}, abstract = {In this paper, we study self-avoiding walks of a given length on a graph. We consider a formulation of this problem as a binary linear program. We analyze the polyhedral structure of the underlying polytope and describe valid inequalities. Proofs for their facial properties for certain special cases are given. In a variation of this problem one is interested in optimal configurations, where an energy function measures the benefit if certain path elements are placed on adjacent vertices of the graph. The most prominent application of this problem is the protein folding problem in biochemistry. On a set of selected instances, we demonstrate the computational merits of our approach.}, language = {en} } @misc{EisenblaetterFuegenschuhGeerdesetal., author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Geerdes, Hans-Florian and Junglas, Daniel and Koch, Thorsten and Martin, Alexander}, title = {Optimization Methods for UMTS Radio Network Planning}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7637}, number = {03-41}, abstract = {The UMTS radio network planning problem poses the challenge of designing a cost-effective network that provides users with sufficient coverage and capacity. We describe an optimization model for this problem that is based on comprehensive planning data of the EU project MOMENTUM. We present heuristic mathematical methods for this realistic model, including computational results.}, language = {en} } @misc{EisenblaetterFuegenschuhKochetal., author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Koch, Thorsten and Koster, Arie M.C.A. and Martin, Alexander and Pfender, Tobias and Wegel, Oliver and Wess{\"a}ly, Roland}, title = {Modelling Feasible Network Configurations for UMTS}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6837}, number = {02-16}, abstract = {A model for the optimisation of the location and configuration of base stations in a UMTS network is described. The focus is primarily on modelling the configuration problem sufficiently accurate using mixed-integer variables and (essentially) linear constraints. These constraints reflect the limited downlink code capacity in each cell, the interference limitations for successful up- and downlink transmissions, the need for sufficiently strong (cell) pilot signals, and the potential gain for mobiles from being in soft(er) hand-over. It is also explained how to use the model as a basis for rating network configurations.}, language = {en} } @misc{EisenblaetterGeerdesKochetal., author = {Eisenbl{\"a}tter, Andreas and Geerdes, Hans-Florian and Koch, Thorsten and Martin, Alexander and Wess{\"a}ly, Roland}, title = {UMTS Radio Network Evaluation and Optimization beyond Snapshots}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7903}, number = {04-15}, abstract = {This paper is concerned with UMTS radio network design. Our task is to reconfigure antennas and the related cells as to improve network quality. In contrast to second generation GSM networks, \emph{interference} plays a paramount role when designing third generation radio networks. A known compact formulation for assessing the interference characteristics of a radio network as coupling relations between cells based on user snapshots is generalized to statistical average load. This enables us to overcome the notorious difficulties of snapshot-based network optimization approaches. We recall a mixed-integer programming model for the network design problem that is based on user snapshots and contrast it with a new network design model based on the average coupling formulation. Exemplarily focusing on the important problem of optimizing antenna tilts, we give computational results for a fast local search algorithm and the application of a MIP solver to both models. These results demonstrate that our new average-based approaches outperform state-of-the-art snapshot models for UMTS radio network optimization.}, language = {en} } @misc{FerreiraGroetschelKiefletal., author = {Ferreira, Carlos E. and Gr{\"o}tschel, Martin and Kiefl, Stefan and Krispenz, Ludwig and Martin, Alexander and Weismantel, Robert}, title = {Some Integer Programs Arising in the Design of Main Frame Computers.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-957}, number = {SC-92-25}, abstract = {In this paper we describe and discuss a problem that arises in the (global) design of a main frame computer. The task is to assign certain functional units to a given number of so called multi chip modules or printed circuit boards taking into account many technical constraints and minimizing a complex objective function. We describe the real world problem. A thorough mathematical modelling of all aspects of this problem results in a rather complicated integer program that seems to be hopelessly difficult -- at least for the present state of integer programming technology. We introduce several relaxations of the general model, which are also \$NP\$-hard, but seem to be more easily accessible. The mathematical relations between the relaxations and the exact formulation of the problem are discussed as well.}, language = {en} } @misc{FerreiraMartinSouzaetal., author = {Ferreira, Carlos E. and Martin, Alexander and Souza, Cid C. de and Weismantel, Robert and Wolsey, Laurence}, title = {Formulations and Valid Inequalities for the Node Capacitated Graph Partitioning Problem.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1450}, number = {SC-94-16}, abstract = {We investigate the problem of partitioning the nodes of a graph under capacity restriction on the sum of the node weights in each subset of the partition. The objective is to minimize the sum of the costs of the edges between the subsets of the partition. This problem has a variety of applications, for instance in the design of electronic circuits and devices. We present alternative integer programming formulations for this problem and discuss the links between these formulations. Having chosen to work in the space of edges of the multicut, we investigate the convex hull of incidence vectors of feasible multicuts. In particular, several classes of inequalities are introduced, and their strength and robustness are analyzed as various problem parameters change.}, language = {en} } @misc{FerreiraMartinSouzaetal., author = {Ferreira, Carlos E. and Martin, Alexander and Souza, Cid C. de and Weismantel, Robert and Wolsey, Laurence}, title = {The Node Capacitated Graph Partitioning Problem: A Computational Study.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1469}, number = {SC-94-17}, abstract = {In this paper we consider the problem of \$k\$-partitioning the nodes of a graph with capacity restrictions on the sum of the node weights in each subset of the partition, and the objective of minimizing the sum of the costs of the edges between the subsets of the partition. Based on a study of valid inequalities, we present a variety of separation heuristics for so-called cycle, cycle with ears, knapsack tree and path-block-cycle inequalities. The separation heuristics, plus primal heuristics, have been implemented in a branch-and-cut routine using a formulation including the edges with nonzero costs and node variables. Results are presented for three classes of problems: equipartitioning problems arising in finite element methods and partitioning problems associated with electronic circuit layout and compiler design.}, language = {en} } @misc{FerreiraMartinWeismantel, author = {Ferreira, Carlos E. and Martin, Alexander and Weismantel, Robert}, title = {Facets for the Multiple Knapsack Problem.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1007}, number = {SC-93-04}, abstract = {In this paper we consider the multiple knapsack problem which is defined as follows: given a set \$N\$ of items with weights \$f_i\$, \$i \in N\$, a set \$M\$ of knapsacks with capacities \$F_k\$, \$k \in M\$, and a profit function \$c_{ik}, i \in N, k \in M\$; find an assignment of a subset of the set of items to the set of knapsacks that yields maximum profit (or minimum cost). With every instance of this problem we associate a polyhedron whose vertices are in one to one correspondence to the feasible solutions of the instance. This polytope is the subject of our investigations. In particular, we present several new classes of inequalities and work out necessary and sufficient conditions under which the corresponding inequality defines a facet. Some of these conditions involve only properties of certain knapsack constraints, and hence, apply to the generalized assignment polytope as well. The results presented here serve as the theoretical basis for solving practical problems. The algorithmic side of our study, i.e., separation algorithms, implementation details and computational experience with a branch and cut algorithm are discussed in the companion paper SC 93-07.}, language = {en} } @misc{FuegenschuhGeisslerGollmeretal., author = {F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Gollmer, Ralf and Hayn, Christine and Henrion, Rene and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Mirkov, Radoslava and Morsi, Antonio and R{\"o}misch, Werner and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Willert, Bernhard}, title = {Mathematical Optimization for Challenging Network Planning Problems in Unbundled Liberalized Gas Markets}, issn = {1438-0064}, doi = {10.1007/s12667-013-0099-8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17821}, abstract = {The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor where united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We show that these new paradigms lead to new and challenging mathematical optimization problems. In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed. With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined.}, language = {en} } @misc{GamrathGleixnerKochetal., author = {Gamrath, Gerald and Gleixner, Ambros and Koch, Thorsten and Miltenberger, Matthias and Kniasew, Dimitri and Schl{\"o}gel, Dominik and Martin, Alexander and Weninger, Dieter}, title = {Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming}, issn = {1438-0064}, doi = {10.4208/jcm.1905-m2019-0055}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61107}, abstract = {SAP's decision support systems for optimized supply network planning rely on mixed-integer programming as the core engine to compute optimal or near-optimal solutions. The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of a robust and future-proof decision support system for a large and diverse customer base. In this paper we describe our coordinated efforts to ensure that the performance of the underlying solution algorithms matches the complexity of the large supply chain problems and tight time limits encountered in practice.}, language = {en} } @misc{GamrathKochMartinetal., author = {Gamrath, Gerald and Koch, Thorsten and Martin, Alexander and Miltenberger, Matthias and Weninger, Dieter}, title = {Progress in Presolving for Mixed Integer Programming}, issn = {1438-0064}, doi = {10.1007/s12532-015-0083-5}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42530}, abstract = {Presolving attempts to eliminate redundant information from the problem formulation and simultaneously tries to strengthen the formulation. It can be very effective and is often essential for solving instances. Especially for mixed integer programming problems, fast and effective presolving algorithms are very important. In this paper, we report on three new presolving techniques. The first method searches for singleton continuous columns and tries to fix the corresponding variables. Then we present a presolving technique which exploits a partial order of the variables to induce fixings. Finally, we show an approach based on connected components in graphs. Our computational results confirm the profitable use of the algorithms in practice.}, language = {en} } @misc{GroetschelMartinWeismantel, author = {Gr{\"o}tschel, Martin and Martin, Alexander and Weismantel, Robert}, title = {Optimum Path Packing on Wheels: The Consecutive Case}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1976}, number = {SC-95-31}, abstract = {We show that, given a wheel with nonnegative edge lengths and pairs of terminals located on the wheel's outer cycle such that the terminal pairs are in consecutive order, then a path packing, i.~e., a collection of edge disjoint paths connecting the given terminal pairs, of minimum length can be found in strongly polynomial time. Moreover, we exhibit for this case a system of linear inequalities that provides a complete and nonredundant description of the path packing polytope, which is the convex hull of all incidence vectors of path packings and their supersets.}, language = {en} } @misc{GroetschelMartinWeismantel, author = {Gr{\"o}tschel, Martin and Martin, Alexander and Weismantel, Robert}, title = {Packing Steiner Trees: Polyhedral Investigations.}, doi = {10.1007/BF02592085}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-786}, number = {SC-92-08}, abstract = {Let \$G=(V,E)\$ be a graph and \$T\subseteq V\$ be a node set. We call an edge set \$S\$ a Steiner tree with respect to \$T\$ if \$S\$ connects all pairs of nodes in \$T\$. In this paper we address the following problem, which we call the weighted Steiner tree packing problem. Given a graph \$G=(V,E)\$ with edge weights \$w_e\$, edge capacities \$c_e, e \in E,\$ and node sets \$T_1,\ldots,T_N\$, find edge sets \$S_1,\ldots,S_N\$ such that each \$S_k\$ is a Steiner tree with respect to \$T_k\$, at most \$c_e\$ of these edge sets use edge \$e\$ for each \$e\in E\$, and such that the sum of the weights of the edge sets is minimal. Our motivation for studying this problem arises from the routing problem in VLSI-design, where given sets of points have to be connected by wires. We consider the Steiner tree packing Problem from a polyhedral point of view and define an appropriate polyhedron, called the Steiner tree packing polyhedron. The goal of this paper is to (partially) describe this polyhedron by means of inequalities. It turns out that, under mild assumptions, each inequality that defines a facet for the (single) Steiner tree polyhedron can be lifted to a facet-defining inequality for the Steiner tree packing polyhedron. The main emphasis of this paper lies on the presentation of so-called joint inequalities that are valid and facet-defining for this polyhedron. Inequalities of this kind involve at least two Steiner trees. The classes of inequalities we have found form the basis of a branch \& cut algorithm. This algorithm is described in our companion paper SC 92-09.}, language = {en} } @misc{GroetschelMartinWeismantel, author = {Gr{\"o}tschel, Martin and Martin, Alexander and Weismantel, Robert}, title = {Packing Steiners Trees: A Cutting Plane Algorithm and Computational Results.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-792}, number = {SC-92-09}, abstract = {In this paper we describe a cutting plane algorithm for the Steiner tree packing problem. We use our algorithm to solve some switchbox routing problems of VLSI-design and report on our computational experience. This includes a brief discussion of separation algorithms, a new LP-based primal heuristic and implementation details. The paper is based on the polyhedral theory for the Steiner tree packing polyhedron developed in our companion paper SC 92-8 and meant to turn this theory into an algorithmic tool for the solution of practical problems.}, language = {en} } @misc{GroetschelMartinWeismantel, author = {Gr{\"o}tschel, Martin and Martin, Alexander and Weismantel, Robert}, title = {The Steiner Tree Packing Problem in VLSI-Design.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1328}, number = {SC-94-02}, abstract = {In this paper we describe several versions of the routing problem arising in VLSI design and indicate how the Steiner tree packing problem can be used to model these problems mathematically. We focus on switchbox routing problems and provide integer programming formulations for routing in the knock-knee and in the Manhattan model. We give a brief sketch of cutting plane algorithms that we developed and implemented for these two models. We report on computational experiments using standard test instances. Our codes are able to determine optimum solutions in most cases, and in particular, we can show that some of the instances have no feasible solution if Manhattan routing is used instead of knock-knee routing.}, language = {en} } @misc{GroetschelMartinWeismantel, author = {Gr{\"o}tschel, Martin and Martin, Alexander and Weismantel, Robert}, title = {Routing in Grid Graphs by Cutting Planes.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-967}, number = {SC-92-26}, abstract = {{\def\N{{\cal N}} \def\R{\hbox{\rm I\kern-2pt R}} \def\MN{{\rm I\kern-2pt N}} In this paper we study the following problem, which we call the weighted routing problem. Let be given a graph \$G=(V,E)\$ with non-negative edge weights \$w_e\in\R_+\$ and integer edge capacities \$c_e\in\MN\$ and let \$\N=\{T_1,\ldots,T_N\}\$, \$N\ge 1\$, be a list of node sets. The weighted routing problem consists in finding edge sets \$S_1,\ldots,S_N\$ such that, for each \$k\in\{1,\ldots,N\}\$, the subgraph \$(V(S_k),S_k)\$ contains an \$[s,t]\$-path for all \$s,t\in T_k\$, at most \$c_e\$ of these edge sets use edge \$e\$ for each \$e\in E\$, and such that the sum of the weights of the edge sets is minimal. Our motivation for studying this problem arises from the routing problem in VLSI-design, where given sets of points have to be connected by wires. We consider the weighted routing problem from a polyhedral point of view. We define an appropriate polyhedron and try to (partially) describe this polyhedron by means of inequalities. We briefly sketch our separation algorithms for some of the presented classes of inequalities. Based on these separation routines we have implemented a branch and cut algorithm. Our algorithm is applicable to an important subclass of routing problems arising in VLSI-design, namely to problems where the underlying graph is a grid graph and the list of node sets is located on the outer face of the grid. We report on our computational experience with this class of problem instances.}}, language = {en} } @misc{GroetschelMartinWeismantel, author = {Gr{\"o}tschel, Martin and Martin, Alexander and Weismantel, Robert}, title = {Packing Steiner Trees: Further Facets.}, doi = {10.1006/eujc.1996.0004}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-975}, number = {SC-93-01}, abstract = {In this paper we continue the investigations in [GMW92a] for the \def\sbppo{Steiner tree packing polyhedron} \sbppo. We present several new classes of valid inequalities and give sufficient (and necessary) conditions for these inequalities to be facet-defining. It is intended to incorporate these inequalities into an existing cutting plane algorithm that is applicable to practical problems arising in the design of electronic circuits.}, language = {en} } @misc{GroetschelMartinWeismantel, author = {Gr{\"o}tschel, Martin and Martin, Alexander and Weismantel, Robert}, title = {Packing Steiner Trees: Separation Algorithms.}, doi = {10.1137/S0895480193258716}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-984}, number = {SC-93-02}, abstract = {In this paper we investigate separation problems for classes of inequalities valid for the polytope associated with the Steiner tree packing problem, a problem that arises, e.~g., in VLSI routing. The separation problem for Steiner partition inequalities is \${\cal N}\hskip-2pt{\cal P}\$-hard in general. We show that it can be solved in polynomial time for those instances that come up in switchbox routing. Our algorithm uses dynamic programming techniques. These techniques are also applied to the much more complicated separation problem for alternating cycle inequalities. In this case we can compute in polynomial time, given some point \$y\$, a lower bound for the gap \$\alpha-a^Ty\$ over all alternating cycle inequalities \$a^Tx\ge\alpha\$. This gives rise to a very effective separation heuristic. A by-product of our algorithm is the solution of a combinatorial optimization problem that is interesting in its own right: Find a shortest path in a graph where the ``length'' of a path is its usual length minus the length of its longest edge.}, language = {en} } @misc{GroetschelMartinWeismantel, author = {Gr{\"o}tschel, Martin and Martin, Alexander and Weismantel, Robert}, title = {Optimum Path Packing on Wheels: The Noncrossing Case.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1225}, number = {SC-93-26}, abstract = {We show that, given a wheel with nonnegative edge lengths and pairs of terminals located on the wheel's outer cycle such that no two terminal pairs cross, then a path packing, i.~e.,a collection of edge disjoint paths connecting the given terminal pairs, of minimum length can be found in strongly polynomial time. Moreover, we exhibit for this case a system of linear inequalities that provides a complete and nonredundant description of the path packing polytope, which is the convex hull of all incidence vectors of path packings and their supersets.}, language = {en} } @misc{JuengerMartinReineltetal., author = {J{\"u}nger, Michael and Martin, Alexander and Reinelt, Gerhard and Weismantel, Robert}, title = {Quadratic 0/1 Optimization and a Decomposition Approach for the Placement of Electronic Circuits.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-803}, number = {SC-92-10}, abstract = {The placement in the layout design of electronic circiuts consists of finding a non- overlapping assignment of rectangular cells to positions on the chip so what wireability is guaranteed and certain technical constraints are met.This problem can be modelled as a quadratic 0/1- program subject to linear constraints. We will present a decomposition approach to the placement problem and give results about \$NP\$-hardness and the existence of \$\varepsilon\$-approximative algorithms for the involved optimization problems. A graphtheoretic formulation of these problems will enable us to develop approximative algorithms. Finally we will present details of the implementation of our approach and compare it to industrial state of the art placement routines. {\bf Keywords:} Quadratic 0/1 optimization, Computational Complexity, VLSI-Design.}, language = {en} } @misc{KochMartin, author = {Koch, Thorsten and Martin, Alexander}, title = {Solving Steiner Tree Problems in Graphs to Optimality}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2526}, number = {SC-96-42}, abstract = {In this paper we present the implementation of a branch-and-cut algorithm for solving Steiner tree problems in graphs. Our algorithm is based on an integer programming formulation for directed graphs and comprises preprocessing, separation algorithms and primal heuristics. We are able to solve all problem instances discussed in literature to optimality, including one to our knowledge not yet solved problem. We also report on our computational experiences with some very large Steiner tree problems arising from the design of electronic circuits. All test problems are gathered in a newly introduced library called {\em SteinLib} that is accessible via World Wide Web.}, language = {en} } @misc{KochMartinVoss, author = {Koch, Thorsten and Martin, Alexander and Voß, Stefan}, title = {SteinLib: An Updated Library on Steiner Tree Problems in Graphs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6056}, number = {00-37}, abstract = {In this paper we present the {\em SteinLib}, a library of data sets for the Steiner tree problem in graphs. This library extends former libraries on Steiner tree problems by many new interesting and difficult instances, most of them arising from real-world applications. We give a survey on the difficulty of these problem instances by giving references to state-of-the-art software packages that were the first or are currently among the best to solve these instances.}, language = {en} } @misc{MarchandMartinWeismanteletal., author = {Marchand, Hugues and Martin, Alexander and Weismantel, Robert and Wolsey, Laurence}, title = {Cutting Planes in Integer and Mixed Integer Programming}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-4339}, number = {SC-99-44}, abstract = {This survey presents cutting planes that are useful or potentially useful in solving mixed integer programs. Valid inequalities for i) general integer programs, ii) problems with local structure such as knapsack constraints, and iii) problems with 0-1 coefficient matrices, such as set packing, are examined in turn. Finally the use of valid inequalities for classes of problems with structure, such as network design, is explored.}, language = {en} } @misc{MartinGeisslerHaynetal., author = {Martin, Alexander and Geißler, Bj{\"o}rn and Hayn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15121}, abstract = {Die mittel- und l{\"a}ngerfristige Planung f{\"u}r den Gastransport hat sich durch {\"A}nderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazit{\"a}t und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und L{\"o}sungsans{\"a}tze skizziert.}, language = {de} } @misc{MartinWeismantel, author = {Martin, Alexander and Weismantel, Robert}, title = {Conjunctive Cuts for Integer Programs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3618}, number = {SC-98-18}, abstract = {This paper deals with a family of conjunctive inequalities. Such inequalities are needed to describe the polyhedron associated with all the integer points that satisfy several knapsack constraints simultaneously. Here we demonstrate the strength and potential of conjunctive inequalities in connection with lifting from a computational point of view.}, language = {en} } @misc{MartinWeismantel, author = {Martin, Alexander and Weismantel, Robert}, title = {Contributions to General Mixed Integer Knapsack Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3075}, number = {SC-97-38}, abstract = {This paper deals with a general mixed integer knapsack polyhedron for which we introduce and analyze a new family of inequalities. We discuss the value of this family both from a theoretic and a computational point of view.}, language = {en} } @misc{MartinWeismantel, author = {Martin, Alexander and Weismantel, Robert}, title = {Packing Paths and Steiner Trees: Routing of Electronic Circuits.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1113}, number = {SC-93-15}, abstract = {One of the challenging problems in the design of electronic circuits is the so-called routing problem. Roughly speaking, the task is to connect so-called terminal sets via wires on a predefined area. In addition, certain design rules are to be taken into account and an objective function such as the wiring length must be minimized. The routing problem in general is too complex to be solved in one step. Depending on the user's choice of decomposing the chip design problem into a hierarchy of stages, on the underlying technology, and on the given design rules, various subproblems arise. We discuss several variants of practically relevant routing problems and give a short overview on the underlying technologies and design rules. Many of the routing problems that come up this way can be formulated as the problem of packing so-called Steiner trees in certain graphs. We consider the Steiner tree packing problem from a polyhedral point of view and present three possibilities to define an appropriate polyhedron. Weighing their pros and cons we decide for one of these polytopes and sketch some of our investigations.}, language = {en} } @misc{MartinWeismantel, author = {Martin, Alexander and Weismantel, Robert}, title = {The Intersection of Knapsack Polyhedra and Extensions}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3300}, number = {SC-97-61}, abstract = {This paper introduces a scheme of deriving strong cutting planes for a general integer programming problem. The scheme is related to Chvatal-Gomory cutting planes and important special cases such as odd hole and clique inequalities for the stable set polyhedron or families of inequalities for the knapsack polyhedron. We analyze how relations between covering and incomparability numbers associated with the matrix can be used to bound coefficients in these inequalities. For the intersection of several knapsack polyhedra, incomparabilities between the column vectors of the associated matrix will be shown to transfer into inequalities of the associated polyhedron. Our scheme has been incorporated into the mixed integer programming code SIP. About experimental results will be reported.}, language = {en} } @misc{PfetschFuegenschuhGeissleretal., author = {Pfetsch, Marc and F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Geißler, Nina and Gollmer, Ralf and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Morsi, Antonio and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Vigerske, Stefan and Willert, Bernhard}, title = {Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions}, issn = {1438-0064}, doi = {10.1080/10556788.2014.888426}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16531}, abstract = {In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously.}, language = {en} } @misc{WeismantelFerreiraMartin, author = {Weismantel, Robert and Ferreira, Carlos E. and Martin, Alexander}, title = {A Cutting Plane Based Algorithm for the Multiple Knapsack Problem.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1031}, number = {SC-93-07}, abstract = {In this paper we describe a cutting plane based algorithm for the multiple knapsack problem. We use our algorithm to solve some practical problem instances arising in the layout of electronic circuits and in the design of main frame computers, and we report on our computational experience. This includes a discussion and evaluation of separation algorithms, an LP-based primal heuristic and some implementation details. The paper is based on the polyhedral theory for the multiple knapsack polytope developed in our companion paper SC 93-04 and meant to turn this theory into an algorithmic tool for the solution of practical problems.}, language = {en} }