@misc{KubeWeber, author = {Kube, Susanna and Weber, Marcus}, title = {Coarse Grained Molecular Kinetics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9299}, number = {06-35}, abstract = {The dynamic behavior of molecules can often be described by Markov processes. From computational molecular simulations one can derive transition rates or transition probabilities between subsets of the discretized conformational space. On the basis of this dynamic information, the spatial subsets are combined into a small number of so-called metastable molecular conformations. This is done by clustering methods like the Robust Perron Cluster Analysis (PCCA+). Up to now it is an open question how this coarse graining in space can be transformed to a coarse graining of the Markov chain while preserving the essential dynamic information. In the following article we aim at a consistent coarse graining of transition probabilities or rates on the basis of metastable conformations such that important physical and mathematical relations are preserved. This approach is new because PCCA+ computes molecular conformations as linear combinations of the dominant eigenvectors of the transition matrix which does not hold for other clustering methods.}, language = {en} } @article{KubeWeber2007, author = {Kube, Susanna and Weber, Marcus}, title = {A Coarse Graining Method for the Identification of Transition rates between Molecular Conformations}, series = {Journal of Chemical Physics}, volume = {126}, journal = {Journal of Chemical Physics}, number = {2}, doi = {10.1063/1.2404953}, year = {2007}, language = {en} }