@inproceedings{KraemerHerrmannBoethetal., author = {Kr{\"a}mer, Martin and Herrmann, Karl-Heinz and Boeth, Heide and Tycowicz, Christoph von and K{\"o}nig, Christian and Zachow, Stefan and Ehrig, Rainald and Hege, Hans-Christian and Duda, Georg and Reichenbach, J{\"u}rgen}, title = {Measuring 3D knee dynamics using center out radial ultra-short echo time trajectories with a low cost experimental setup}, series = {ISMRM (International Society for Magnetic Resonance in Medicine), 23rd Annual Meeting 2015, Toronto, Canada}, booktitle = {ISMRM (International Society for Magnetic Resonance in Medicine), 23rd Annual Meeting 2015, Toronto, Canada}, language = {en} } @inproceedings{KraemerMaggioniTycowiczetal., author = {Kr{\"a}mer, Martin and Maggioni, Marta and Tycowicz, Christoph von and Brisson, Nick and Zachow, Stefan and Duda, Georg and Reichenbach, J{\"u}rgen}, title = {Ultra-short echo-time (UTE) imaging of the knee with curved surface reconstruction-based extraction of the patellar tendon}, series = {ISMRM (International Society for Magnetic Resonance in Medicine), 26th Annual Meeting 2018, Paris, France}, booktitle = {ISMRM (International Society for Magnetic Resonance in Medicine), 26th Annual Meeting 2018, Paris, France}, abstract = {Due to very short T2 relaxation times, imaging of tendons is typically performed using ultra-short echo-time (UTE) acquisition techniques. In this work, we combined an echo-train shifted multi-echo 3D UTE imaging sequence with a 3D curved surface reconstruction to virtually extract the patellar tendon from an acquired 3D UTE dataset. Based on the analysis of the acquired multi-echo data, a T2* relaxation time parameter map was calculated and interpolated to the curved surface of the patellar tendon.}, language = {en} }