@incollection{GroetschelHillerTuchscherer2009, author = {Gr{\"o}tschel, Martin and Hiller, Benjamin and Tuchscherer, Andreas}, title = {Structuring a Dynamic Environment}, booktitle = {Emergence, Analysis and Evolution of Structures. Concepts and Strategies Across Disciplines}, editor = {Lucas, Klaus and Roosen, Peter}, publisher = {Springer}, doi = {10.1007/978-3-642-00870-2}, pages = {199 -- 214}, year = {2009}, language = {en} } @misc{GroetschelHillerTuchscherer2007, author = {Gr{\"o}tschel, Martin and Hiller, Benjamin and Tuchscherer, Andreas}, title = {Combinatorial Online Optimization: Elevators \& Yellow Angels}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10360}, number = {07-36}, year = {2007}, abstract = {In \emph{classical optimization} it is assumed that full information about the problem to be solved is given. This, in particular, includes that all data are at hand. The real world may not be so nice'' to optimizers. Some problem constraints may not be known, the data may be corrupted, or some data may not be available at the moments when decisions have to be made. The last issue is the subject of \emph{online optimization} which will be addressed here. We explain some theory that has been developed to cope with such situations and provide examples from practice where unavailable information is not the result of bad data handling but an inevitable phenomenon.}, language = {en} } @misc{BeckerHiller2020, author = {Becker, Kai-Helge and Hiller, Benjamin}, title = {Efficient Enumeration of Acyclic Graph Orientations with Sources or Sinks Revisited}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-77684}, year = {2020}, abstract = {In a recent paper, Conte et al. [CGMR2017] presented an algorithm for enumerating all acyclic orientations of a graph G=(V,E) with a single source (and related orientations) with delay O(|V||E|). In this paper we revisit the problem by going back to an early paper by de Fraysseix et al. [FMR1995], who proposed an algorithm for enumerating all bipolar orientations of a graph based on a recursion formula. We first formalize de Fraysseix et al.'s algorithm for bipolar orientations and determine that its delay is also O(|V||E|). We then apply their recursion formula to the case of Conte et al.'s enumeration problem and show that this yields a more efficient enumeration algorithm with delay O(\sqrt(|V|)|E|). Finally, a way to further streamline the algorithm that leads to a particularly simple implementation is suggested.}, language = {en} } @misc{BeckerHiller2019, author = {Becker, Kai-Helge and Hiller, Benjamin}, title = {Improved optimization models for potential-driven network flow problems via ASTS orientations}, issn = {1438-0064}, doi = {10.12752/7534}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-75347}, year = {2019}, abstract = {The class of potential-driven network flow problems provides important models for a range of infrastructure networks that lead to hard-to-solve MINLPs in real-world applications. On large-scale meshed networks the relaxations usually employed are rather weak due to cycles in the network. To address this situation, we introduce the concept of ASTS orientations, a generalization of bipolar orientations, as a combinatorial relaxation of feasible solutions of potential-driven flow problems, study their structure, and show how they can be used to strengthen existing relaxations and thus provide improved optimization models. Our computational results indicate that ASTS orientations can be used to derive much stronger bounds on the flow variables than existing bound tightening methods and to yield significant performance improvements for an existing state-of-the-art MILP model for large-scale gas networks.}, language = {en} } @inproceedings{AndersonHiller2019, author = {Anderson, Lovis and Hiller, Benjamin}, title = {A Sweep-Plane Algorithm for the Computation of the Volume of a Union of Polytopes}, volume = {Operations Research Proceedings}, booktitle = {Operations Research Proceedings 2018}, doi = {10.1007/978-3-030-18500-8_12}, year = {2019}, abstract = {Optimization models often feature disjunctions of polytopes as submodels. Such a disjunctive set is initially at best) relaxed to its convex hull, which is then refined by branching. To measure the error of the convex relaxation, the (relative) difference between the volume of the convex hull and the volume of the disjunctive set may be used. This requires a method to compute the volume of the disjunctive set. We propose a revised variant of an old algorithm by Bieri and Nef (1983) for this purpose. The algorithm uses a sweep-plane to incrementally calculate the volume of the disjunctive set as a function of the offset parameter of the sweep-plane.}, language = {en} } @misc{BeckerHiller2018, author = {Becker, Kai-Helge and Hiller, Benjamin}, title = {ASTS Orientations on Undirected Graphs: Structural analysis and enumeration}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69632}, year = {2018}, abstract = {All feasible flows in potential-driven networks induce an orientation on the undirected graph underlying the network. Clearly, these orientations must satisfy two conditions: they are acyclic and there are no "dead ends" in the network, i.e. each source requires outgoing flows, each sink requires incoming flows, and each transhipment vertex requires both an incoming and an outgoing flow. In this paper we will call orientations that satisfy these conditions acyclic source-transhipment-sink orientations (ASTS-orientation) and study their structure. In particular, we characterize graphs that allow for such an orientation, describe a way to enumerate all possible ASTS-orientations of a given graph, present an algorithm to simplify and decompose a graph before such an enumeration and shed light on the role of zero flows in the context of ASTS-orientations.}, language = {en} } @misc{HillerBecker2018, author = {Hiller, Benjamin and Becker, Kai-Helge}, title = {Improving relaxations for potential-driven network flow problems via acyclic flow orientations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69622}, year = {2018}, abstract = {The class of potential-driven network flow problems provides important models for a range of infrastructure networks. For real-world applications, they need to be combined with integer models for switching certain network elements, giving rise to hard-to-solve MINLPs. We observe that on large-scale real-world meshed networks the usually employed relaxations are rather weak due to cycles in the network. We propose acyclic flow orientations as a combinatorial relaxation of feasible solutions of potential-driven flow problems and show how they can be used to strengthen existing relaxations. First computational results indicate that the strengthend model is much tighter than the original relaxation, thus promising a computational advantage.}, language = {en} } @misc{AndersonHiller2018, author = {Anderson, Lovis and Hiller, Benjamin}, title = {A Sweep-Plane Algorithm for the Computation of the Volume of a Union of Polytopes}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69489}, year = {2018}, abstract = {Optimization models often feature disjunctions of polytopes as submodels. Such a disjunctive set is initially (at best) relaxed to its convex hull, which is then refined by branching. To measure the error of the convex relaxation, the (relative) difference between the volume of the convex hull and the volume of the disjunctive set may be used. This requires a method to compute the volume of the disjunctive set. Naively, this can be done via inclusion/exclusion and leveraging the existing code for the volume of polytopes. However, this is often inefficient. We propose a revised variant of an old algorithm by Bieri and Nef (1983) for this purpose. The algorithm uses a sweep-plane to incrementally calculate the volume of the disjunctive set as a function of the offset parameter of the sweep-plane.}, language = {en} } @misc{HillerSaitenmacherWalther2018, author = {Hiller, Benjamin and Saitenmacher, Ren{\´e} and Walther, Tom}, title = {Analysis of operating modes of complex compressor stations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-68179}, year = {2018}, abstract = {We consider the modeling of operation modes for complex compressor stations (i.e., ones with several in- or outlets) in gas networks. In particular, we propose a refined model that allows to precompute tighter relaxations for each operation mode. These relaxations may be used to strengthen the compressor station submodels in gas network optimization problems. We provide a procedure to obtain the refined model from the input data for the original model. This procedure is based on a nontrivial reduction of the graph representing the gas flow through the compressor station in an operation mode.}, language = {en} } @inproceedings{HillerVredeveld2009, author = {Hiller, Benjamin and Vredeveld, Tjark}, title = {Stochastic dominance analysis of online bin coloring algorithms}, booktitle = {9th Workshop on Models and Algorithms for Planning and Scheduling Problems}, year = {2009}, language = {en} }