@misc{AchterbergBertholdHendel2011, author = {Achterberg, Tobias and Berthold, Timo and Hendel, Gregor}, title = {Rounding and Propagation Heuristics for Mixed Integer Programming}, doi = {10.1007/978-3-642-29210-1_12}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13255}, number = {11-29}, year = {2011}, abstract = {Primal heuristics are an important component of state-of-the-art codes for mixed integer programming. In this paper, we focus on primal heuristics that only employ computationally inexpensive procedures such as rounding and logical deductions (propagation). We give an overview of eight different approaches. To assess the impact of these primal heuristics on the ability to find feasible solutions, in particular early during search, we introduce a new performance measure, the primal integral. Computational experiments evaluate this and other measures on MIPLIB~2010 benchmark instances.}, language = {en} } @article{BertholdHendelKoch2017, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {From feasibility to improvement to proof: three phases of solving mixed-integer programs}, volume = {33}, journal = {Optimization Methods and Software}, number = {3}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2017.1392519}, pages = {499 -- 517}, year = {2017}, abstract = {Modern mixed-integer programming (MIP) solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three distinct phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behaviour of the non-commercial MIP solver Scip at the predicted phase transition points.}, language = {en} } @article{BertholdHendel2014, author = {Berthold, Timo and Hendel, Gregor}, title = {Shift-and-Propagate}, volume = {21}, journal = {Journal of Heuristics}, number = {1}, doi = {10.1007/s10732-014-9271-0}, pages = {73 -- 106}, year = {2014}, abstract = {In recent years, there has been a growing interest in the design of general purpose primal heuristics for use inside complete mixed integer programming solvers. Many of these heuristics rely on an optimal LP solution, which may take a significant amount of time to find. In this paper, we address this issue by introducing a pre-root primal heuristic that does not require a previously found LP solution. This heuristic, named Shift-and-Propagate , applies domain propagation techniques to quickly drive a variable assignment towards feasibility. Computational experiments indicate that this heuristic is a powerful supplement to existing rounding and propagation heuristics.}, language = {en} } @misc{Hendel2015, author = {Hendel, Gregor}, title = {Exploiting Solving Phases for Mixed-Integer Programs}, issn = {1438-0064}, doi = {10.1007/978-3-319-42902-1_1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57098}, year = {2015}, abstract = {Modern MIP solving software incorporates dozens of auxiliary algorithmic components for supporting the branch-and-bound search in finding and improving solutions and in strengthening the relaxation. Intuitively, a dynamic solving strategy with an appropriate emphasis on different solving components and strategies is desirable during the search process. We propose an adaptive solver behavior that dynamically reacts on transitions between the three typical phases of a MIP solving process: The first phase objective is to find a feasible solution. During the second phase, a sequence of incumbent solutions gets constructed until the incumbent is eventually optimal. Proving optimality is the central objective of the remaining third phase. Based on the MIP-solver SCIP, we demonstrate the usefulness of the phase concept both with an exact recognition of the optimality of a solution, and provide heuristic alternatives to make use of the concept in practice.}, language = {en} } @misc{BertholdHendelKoch2016, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {The Three Phases of MIP Solving}, issn = {1438-0064}, doi = {10.1080/10556788.2017.1392519}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61607}, year = {2016}, abstract = {Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.}, language = {en} }