@misc{AchterbergBertholdHendel, author = {Achterberg, Tobias and Berthold, Timo and Hendel, Gregor}, title = {Rounding and Propagation Heuristics for Mixed Integer Programming}, doi = {10.1007/978-3-642-29210-1_12}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13255}, number = {11-29}, abstract = {Primal heuristics are an important component of state-of-the-art codes for mixed integer programming. In this paper, we focus on primal heuristics that only employ computationally inexpensive procedures such as rounding and logical deductions (propagation). We give an overview of eight different approaches. To assess the impact of these primal heuristics on the ability to find feasible solutions, in particular early during search, we introduce a new performance measure, the primal integral. Computational experiments evaluate this and other measures on MIPLIB~2010 benchmark instances.}, language = {en} } @misc{AndersonHendelLeBodicetal., author = {Anderson, Daniel and Hendel, Gregor and Le Bodic, Pierre and Viernickel, Jan Merlin}, title = {Clairvoyant Restarts in Branch-and-Bound Search Using Online Tree-Size Estimation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72653}, abstract = {We propose a simple and general online method to measure the search progress within the Branch-and-Bound algorithm, from which we estimate the size of the remaining search tree. We then show how this information can help solvers algorithmically at runtime by designing a restart strategy for Mixed-Integer Programming (MIP) solvers that decides whether to restart the search based on the current estimate of the number of remaining nodes in the tree. We refer to this type of algorithm as clairvoyant. Our clairvoyant restart strategy outperforms a state-of-the-art solver on a large set of publicly available MIP benchmark instances. It is implemented in the MIP solver SCIP and will be available in future releases.}, language = {en} } @misc{BertholdHendel, author = {Berthold, Timo and Hendel, Gregor}, title = {Shift-And-Propagate}, issn = {1438-0064}, doi = {10.1007/s10732-014-9271-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17596}, abstract = {For mixed integer programming, recent years have seen a growing interest in the design of general purpose primal heuristics for use inside complete solvers. Many of these heuristics rely on an optimal LP solution. Finding this may itself take a significant amount of time. The presented paper addresses this issue by the introduction of the Shift-And-Propagate heuristic. Shift-And-Propagate is a pre-root primal heuristic that does not require a previously found LP solution. It applies domain propagation techniques to quickly drive a variable assignment towards feasibility. Computational experiments indicate that this heuristic is a powerful supplement of existing rounding and propagation heuristics.}, language = {en} } @misc{BertholdHendelKoch, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {The Three Phases of MIP Solving}, issn = {1438-0064}, doi = {10.1080/10556788.2017.1392519}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61607}, abstract = {Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.}, language = {en} } @misc{GamrathAndersonBestuzhevaetal., author = {Gamrath, Gerald and Anderson, Daniel and Bestuzheva, Ksenia and Chen, Wei-Kun and Eifler, Leon and Gasse, Maxime and Gemander, Patrick and Gleixner, Ambros and Gottwald, Leona and Halbig, Katrin and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Le Bodic, Pierre and Maher, Stephen J. and Matter, Frederic and Miltenberger, Matthias and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Tawfik, Christine and Vigerske, Stefan and Wegscheider, Fabian and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 7.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78023}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders' decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders' decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @misc{GamrathFischerGallyetal., author = {Gamrath, Gerald and Fischer, Tobias and Gally, Tristan and Gleixner, Ambros and Hendel, Gregor and Koch, Thorsten and Maher, Stephen J. and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schenker, Sebastian and Schwarz, Robert and Serrano, Felipe and Shinano, Yuji and Vigerske, Stefan and Weninger, Dieter and Winkler, Michael and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 3.2}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57675}, abstract = {The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.}, language = {en} } @misc{GeorgesGleixnerGojicetal., author = {Georges, Alexander and Gleixner, Ambros and Gojic, Gorana and Gottwald, Robert Lion and Haley, David and Hendel, Gregor and Matejczyk, Bartlomiej}, title = {Feature-Based Algorithm Selection for Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-68362}, abstract = {Mixed integer programming is a versatile and valuable optimization tool. However, solving specific problem instances can be computationally demanding even for cutting-edge solvers. Such long running times are often significantly reduced by an appropriate change of the solver's parameters. In this paper we investigate "algorithm selection", the task of choosing among a set of algorithms the ones that are likely to perform best for a particular instance. In our case, we treat different parameter settings of the MIP solver SCIP as different algorithms to choose from. Two peculiarities of the MIP solving process have our special attention. We address the well-known problem of performance variability by using multiple random seeds. Besides solving time, primal dual integrals are recorded as a second performance measure in order to distinguish solvers that timed out. We collected feature and performance data for a large set of publicly available MIP instances. The algorithm selection problem is addressed by several popular, feature-based methods, which have been partly extended for our purpose. Finally, an analysis of the feature space and performance results of the selected algorithms are presented.}, language = {en} } @misc{GleixnerBastubbeEifleretal., author = {Gleixner, Ambros and Bastubbe, Michael and Eifler, Leon and Gally, Tristan and Gamrath, Gerald and Gottwald, Robert Lion and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schl{\"o}sser, Franziska and Schubert, Christoph and Serrano, Felipe and Shinano, Yuji and Viernickel, Jan Merlin and Walter, Matthias and Wegscheider, Fabian and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 6.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69361}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders' decomposition in a generic framework. GCG's detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders' framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @misc{GleixnerEiflerGallyetal., author = {Gleixner, Ambros and Eifler, Leon and Gally, Tristan and Gamrath, Gerald and Gemander, Patrick and Gottwald, Robert Lion and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Viernickel, Jan Merlin and Vigerske, Stefan and Weninger, Dieter and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 5.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66297}, abstract = {This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 \% faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 \% faster overall and 23 \% faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.}, language = {en} } @masterthesis{Hendel, type = {Bachelor Thesis}, author = {Hendel, Gregor}, title = {New Rounding and Propagation Heuristics for Mixed Integer Programming}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13322}, school = {Zuse Institute Berlin (ZIB)}, pages = {95}, abstract = {Die vorliegende Arbeit befasst sich mit Primalheuristiken f{\"u}r gemischt-ganzzahlige, lineare Optimierungsprobleme (engl.: mixed integer program MIP). Zahlreiche Optimierungsprobleme aus der Praxis lassen sich als MIP modellieren, Beispiele hierf{\"u}r sind u. a. Optimierungsprobleme im {\"o}ffentlichen Nah- und Fernverkehr, bei logistischen Fragestellungen oder im Bereich der Chip-Verifikation. Das L{\"o}sen von MIP ist NP-schwer und wird heutzutage meistens mit Hilfe von Branch-and-Bound-basierenden Algorithmen versucht. Das Branch-and-Bound-Ver\-fah\-ren profitiert unter Umst{\"a}nden von bereits fr{\"u}hzeitig zur Verf{\"u}gung stehenden L{\"o}sungen, daher sind wir sehr an heuristischen Verfahren interessiert, die in der Praxis schnell eine gute L{\"o}sung f{\"u}r eine große Zahl an MIPs liefern und somit die L{\"o}sezeit des Branch-and-Bound-Verfahrens erheblich beschleunigen k{\"o}nnen. Primalheuristiken sind Suchverfahren zum Auffinden zul{\"a}ssiger L{\"o}sungen eines MIP. Verschiedene Typen von Primalheuristiken sollen dabei den jeweiligen Bedarf des Anwenders zu unterschiedlichen Zeiten w{\"a}hrend der Branch-and-Bound-Suche decken. W{\"a}hrend Start- und Rundeheuristiken zu Beginn des L{\"o}seprozesses eine große Rolle bei der Suche nach der ersten zul{\"a}ssigen L{\"o}sung haben, arbeiten Verbesserungs-heuristiken auf schon bekannten L{\"o}sungen, um neue, bessere L{\"o}sungen zu produzieren. Diese Arbeit besch{\"a}ftigt sich mit Primalheuristiken, welche Teil des MIP-L{\"o}sers SCIP sind. Im ersten Kapitel werden nach der Erarbeitung grundlegender Definitionen viele der durch Tobias Achterberg und Timo Berthold in SCIP integrierten heuristischen Verfahren vorgestellt und kategorisiert. Auf dieser Grundlage bauen dann die Kapitel 2-4 der Arbeit auf. In diesen werden drei zus{\"a}tzliche Heuristiken vorgestellt, im Einzelnen sind dies ZI Round, eine Rundeheuristik, welche zuerst von Wallace beschrieben wurde, außerdem eine 2-Opt-Heuristik f{\"u}r MIP und eine neue Startheuristik, Shift-And-Propagate. Großer Wert wird in jedem Kapitel auf die algorithmische Beschreibung der Heuristiken gelegt, die stets anhand von motivierenden Beispielen eingef{\"u}hrt und anhand von Pseudocode-Algorithmen begleitet werden. Zus{\"a}tzlich enth{\"a}lt jedes Kapitel Auswertungen der mit den neuen Heuristiken gemessenen Ergebnisse von SCIP. Eine kurze Zusammenfassung in Kapitel 5 schließt diese Arbeit ab.}, language = {en} }