@misc{HeinzKuBeck, author = {Heinz, Stefan and Ku, Wen-Yang and Beck, J. Christopher}, title = {Recent improvements using constraint integer programming for resource allocation and scheduling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17676}, abstract = {Recently, we compared the performance of mixed-integer programming (MIP), constraint programming (CP), and constraint integer programming (CIP) to a state-of-the-art logic-based Benders manual decomposition (LBBD) for a resource allocation/scheduling problem. For a simple linear relaxation, the LBBD and CIP models deliver comparable performance with MIP also performing well. Here we show that algorithmic developments in CIP plus the use of an existing tighter relaxation substantially improve one of the CIP approaches. Furthermore, the use of the same relaxation in LBBD and MIP models significantly improves their performance. While such a result is known for LBBD, to the best of our knowledge, the other results are novel. Our experiments show that both CIP and MIP approaches are competitive with LBBD in terms of the number of problems solved to proven optimality, though MIP is about three times slower on average. Further, unlike the LBBD and CIP approaches, the MIP model is able to obtain provably high-quality solutions for all problem instances.}, language = {en} } @misc{ShinanoHeinzVigerskeetal., author = {Shinano, Yuji and Heinz, Stefan and Vigerske, Stefan and Winkler, Michael}, title = {FiberSCIP - A shared memory parallelization of SCIP}, issn = {1438-0064}, doi = {10.1287/ijoc.2017.0762}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42595}, abstract = {Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a MIP solver and constraint integer programming framework available in source code. There is a parallel extension of SCIP named ParaSCIP, which parallelizes SCIP on massively parallel distributed memory computing environments. This paper describes FiberSCIP, which is yet another parallel extension of SCIP to utilize multi-threaded parallel computation on shared memory computing environments, and has the following contributions: First, the basic concept of having two parallel extensions and the relationship between them and the parallelization framework provided by UG (Ubiquity Generator) is presented, including an implementation of deterministic parallelization. Second, the difficulties to achieve a good performance that utilizes all resources on an actual computing environment and the difficulties of performance evaluation of the parallel solvers are discussed. Third, a way to evaluate the performance of new algorithms and parameter settings of the parallel extensions is presented. Finally, current performance of FiberSCIP for solving mixed-integer linear programs (MIPs) and mixed-integer non-linear programs (MINLPs) in parallel is demonstrated.}, language = {en} }