@inproceedings{KainmuellerLameckerSeimetal.2010, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Seim, Heiko and Zachow, Stefan and Hege, Hans-Christian}, title = {Improving Deformable Surface Meshes through Omni-directional Displacements and MRFs}, series = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI)}, volume = {6361}, booktitle = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI)}, editor = {Navab, Tianzi and P. W. Pluim, Josien and Viergever, Max}, publisher = {Springer}, doi = {10.1007/978-3-642-15705-9_28}, pages = {227 -- 234}, year = {2010}, language = {en} } @article{DworzakLameckervonBergetal.2010, author = {Dworzak, Jalda and Lamecker, Hans and von Berg, Jens and Klinder, Tobias and Lorenz, Cristian and Kainm{\"u}ller, Dagmar and Seim, Heiko and Hege, Hans-Christian and Zachow, Stefan}, title = {3D Reconstruction of the Human Rib Cage from 2D Projection Images using a Statistical Shape Model}, series = {Int. J. Comput. Assist. Radiol. Surg.}, volume = {5}, journal = {Int. J. Comput. Assist. Radiol. Surg.}, number = {2}, publisher = {Springer}, issn = {1861-6410}, doi = {10.1007/s11548-009-0390-2}, pages = {111 -- 124}, year = {2010}, language = {en} } @inproceedings{ZachowZilskeHege2007, author = {Zachow, Stefan and Zilske, Michael and Hege, Hans-Christian}, title = {3D Reconstruction of Individual Anatomy from Medical Image Data: Segmentation and Geometry Processing}, series = {25. ANSYS Conference \& CADFEM Users' Meeting}, booktitle = {25. ANSYS Conference \& CADFEM Users' Meeting}, address = {Dresden}, year = {2007}, language = {en} } @article{LameckerZachowWittmersetal.2006, author = {Lamecker, Hans and Zachow, Stefan and Wittmers, Antonia and Weber, Britta and Hege, Hans-Christian and Elsholtz, Barbara and Stiller, Michael}, title = {Automatic segmentation of mandibles in low-dose CT-data}, series = {Int. J. Computer Assisted Radiology and Surgery}, volume = {1(1)}, journal = {Int. J. Computer Assisted Radiology and Surgery}, pages = {393 -- 395}, year = {2006}, language = {en} } @article{LameckerZachowHegeetal.2006, author = {Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian and Z{\"o}ckler, Maja}, title = {Surgical treatment of craniosynostosis based on a statistical 3D-shape model}, series = {Int. J. Computer Assisted Radiology and Surgery}, volume = {1(1)}, journal = {Int. J. Computer Assisted Radiology and Surgery}, doi = {10.1007/s11548-006-0024-x}, pages = {253 -- 254}, year = {2006}, language = {en} } @article{ZachowHegeDeuflhard2006, author = {Zachow, Stefan and Hege, Hans-Christian and Deuflhard, Peter}, title = {Computer assisted planning in cranio-maxillofacial surgery}, series = {Journal of Computing and Information Technology}, volume = {14(1)}, journal = {Journal of Computing and Information Technology}, pages = {53 -- 64}, year = {2006}, language = {en} } @article{OeltzeJaffraMeuschkeNeugebaueretal., author = {Oeltze-Jaffra, Steffen and Meuschke, Monique and Neugebauer, Mathias and Saalfeld, Sylvia and Lawonn, Kai and Janiga, Gabor and Hege, Hans-Christian and Zachow, Stefan and Preim, Bernhard}, title = {Generation and Visual Exploration of Medical Flow Data: Survey, Research Trends, and Future Challenges}, series = {Computer Graphics Forum}, volume = {38}, journal = {Computer Graphics Forum}, number = {1}, publisher = {Wiley}, doi = {10.1111/cgf.13394}, pages = {87 -- 125}, abstract = {Simulations and measurements of blood and air flow inside the human circulatory and respiratory system play an increasingly important role in personalized medicine for prevention, diagnosis, and treatment of diseases. This survey focuses on three main application areas. (1) Computational Fluid Dynamics (CFD) simulations of blood flow in cerebral aneurysms assist in predicting the outcome of this pathologic process and of therapeutic interventions. (2) CFD simulations of nasal airflow allow for investigating the effects of obstructions and deformities and provide therapy decision support. (3) 4D Phase-Contrast (4D PC) Magnetic Resonance Imaging (MRI) of aortic hemodynamics supports the diagnosis of various vascular and valve pathologies as well as their treatment. An investigation of the complex and often dynamic simulation and measurement data requires the coupling of sophisticated visualization, interaction, and data analysis techniques. In this paper, we survey the large body of work that has been conducted within this realm. We extend previous surveys by incorporating nasal airflow, addressing the joint investigation of blood flow and vessel wall properties, and providing a more fine-granular taxonomy of the existing techniques. From the survey, we extract major research trends and identify open problems and future challenges. The survey is intended for researchers interested in medical flow but also more general, in the combined visualization of physiology and anatomy, the extraction of features from flow field data and feature-based visualization, the visual comparison of different simulation results, and the interactive visual analysis of the flow field and derived characteristics.}, language = {en} } @inproceedings{KraemerHerrmannBoethetal., author = {Kr{\"a}mer, Martin and Herrmann, Karl-Heinz and Boeth, Heide and Tycowicz, Christoph von and K{\"o}nig, Christian and Zachow, Stefan and Ehrig, Rainald and Hege, Hans-Christian and Duda, Georg and Reichenbach, J{\"u}rgen}, title = {Measuring 3D knee dynamics using center out radial ultra-short echo time trajectories with a low cost experimental setup}, series = {ISMRM (International Society for Magnetic Resonance in Medicine), 23rd Annual Meeting 2015, Toronto, Canada}, booktitle = {ISMRM (International Society for Magnetic Resonance in Medicine), 23rd Annual Meeting 2015, Toronto, Canada}, language = {en} }