@misc{RosanwoPetzProhaskaetal., author = {Rosanwo, Olufemi and Petz, Christoph and Prohaska, Steffen and Hotz, Ingrid and Hege, Hans-Christian}, title = {Dual Streamline Seeding - Method and Implementation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11032}, number = {08-49}, abstract = {This work introduces a novel streamline seeding technique based on dual streamlines that are orthogonal to the vector field, instead of tangential. The greedy algorithm presented here produces a net of orthogonal streamlines that is iteratively refined resulting in good domain coverage and a high degree of continuity and uniformity. The algorithm is easy to implement and efficient, and it naturally extends to curved surfaces.}, language = {en} } @misc{GrammelHegeWunderling, author = {Grammel, Martin and Hege, Hans-Christian and Wunderling, Roland}, title = {On the Impact of Communication Latencies on Distributed Sparse LU Factorization.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1245}, number = {SC-93-28}, abstract = {Sparse LU factorization offers some potential for parallelism, but at a level of very fine granularity. However, most current distributed memory MIMD architectures have too high communication latencies for exploiting all parallelism available. To cope with this, latencies must be avoided by coarsening the granularity and by message fusion. However, both techniques limit the concurrency, thereby reducing the scalability. In this paper, an implementation of a parallel LU decomposition algorithm for linear programming bases is presented for distributed memory parallel computers with noticable communication latencies. Several design decisions due to latencies, including data distribution and load balancing techniques, are discussed. An approximate performance model is set up for the algorithm, which allows to quantify the impact of latencies on its performance. Finally, experimental results for an Intel iPSC/860 parallel computer are reported and discussed.}, language = {en} } @article{LindowBaumHege2014, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Ligand Excluded Surface: A New Type of Molecular Surface}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {20}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2014.2346404}, pages = {2486 -- 2495}, year = {2014}, abstract = {The most popular molecular surface in molecular visualization is the solvent excluded surface (SES). It provides information about the accessibility of a biomolecule for a solvent molecule that is geometrically approximated by a sphere. During a period of almost four decades, the SES has served for many purposes - including visualization, analysis of molecular interactions and the study of cavities in molecular structures. However, if one is interested in the surface that is accessible to a molecule whose shape differs significantly from a sphere, a different concept is necessary. To address this problem, we generalize the definition of the SES by replacing the probe sphere with the full geometry of the ligand defined by the arrangement of its van der Waals spheres. We call the new surface ligand excluded surface (LES) and present an efficient, grid-based algorithm for its computation. Furthermore, we show that this algorithm can also be used to compute molecular cavities that could host the ligand molecule. We provide a detailed description of its implementation on CPU and GPU. Furthermore, we present a performance and convergence analysis and compare the LES for several molecules, using as ligands either water or small organic molecules.}, language = {en} } @misc{LindowBaumHege, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Ligand Excluded Surface: A New Type of Molecular Surface}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-51194}, abstract = {The most popular molecular surface in molecular visualization is the solvent excluded surface (SES). It provides information about the accessibility of a biomolecule for a solvent molecule that is geometrically approximated by a sphere. During a period of almost four decades, the SES has served for many purposes - including visualization, analysis of molecular interactions and the study of cavities in molecular structures. However, if one is interested in the surface that is accessible to a molecule whose shape differs significantly from a sphere, a different concept is necessary. To address this problem, we generalize the definition of the SES by replacing the probe sphere with the full geometry of the ligand defined by the arrangement of its van der Waals spheres. We call the new surface ligand excluded surface (LES) and present an efficient, grid-based algorithm for its computation. Furthermore, we show that this algorithm can also be used to compute molecular cavities that could host the ligand molecule. We provide a detailed description of its implementation on CPU and GPU. Furthermore, we present a performance and convergence analysis and compare the LES for several molecules, using as ligands either water or small organic molecules.}, language = {en} } @article{EggerDercksenUdvaryetal., author = {Egger, Robert and Dercksen, Vincent J. and Udvary, Daniel and Hege, Hans-Christian and Oberlaender, Marcel}, title = {Generation of dense statistical connectomes from sparse morphological data}, series = {Frontiers in Neuroanatomy}, volume = {8}, journal = {Frontiers in Neuroanatomy}, number = {129}, doi = {10.3389/fnana.2014.00129}, language = {en} } @inproceedings{KlindtProhaskaBaumetal.2012, author = {Klindt, Marco and Prohaska, Steffen and Baum, Daniel and Hege, Hans-Christian}, title = {Conveying Archaeological Contexts to Museum Visitors: Case Study Pergamon Exhibition}, series = {VAST12: The 13th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers}, booktitle = {VAST12: The 13th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers}, editor = {Arnold, David and Kaminski, Jaime and Niccolucci, Franco and Stork, Andre}, publisher = {Eurographics Association}, address = {Brighton, UK}, doi = {10.2312/PE/VAST/VAST12S/025-028}, pages = {25 -- 28}, year = {2012}, language = {en} } @inproceedings{KlindtBaumProhaskaetal.2012, author = {Klindt, Marco and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {iCon.text - a customizable iPad app for kiosk applications in museum exhibitions}, series = {EVA 2012 Berlin}, booktitle = {EVA 2012 Berlin}, publisher = {Gesellschaft zur F{\"o}rderung angewandter Informatik e.V.}, address = {Volmerstraße 3, 12489 Berlin}, pages = {150 -- 155}, year = {2012}, language = {en} } @inproceedings{LindowBaumBondaretal.2012, author = {Lindow, Norbert and Baum, Daniel and Bondar, Ana-Nicoleta and Hege, Hans-Christian}, title = {Dynamic Channels in Biomolecular Systems: Path Analysis and Visualization}, series = {Proceedings of IEEE Symposium on Biological Data Visualization (biovis'12)}, booktitle = {Proceedings of IEEE Symposium on Biological Data Visualization (biovis'12)}, doi = {10.1109/BioVis.2012.6378599}, pages = {99 -- 106}, year = {2012}, language = {en} } @incollection{PoethkowHege2012, author = {P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Uncertainty Propagation in DT-MRI Anisotropy Isosurface Extraction}, series = {New Developments in the Visualization and Processing of Tensor Fields}, booktitle = {New Developments in the Visualization and Processing of Tensor Fields}, editor = {Laidlaw, David and Vilanova, Anna}, publisher = {Springer}, address = {Berlin}, pages = {209 -- 225}, year = {2012}, language = {en} } @misc{StallingWesterhoffHege2005, author = {Stalling, Detlev and Westerhoff, Malte and Hege, Hans-Christian}, title = {Amira: A highly interactive system for visual data analysis}, series = {The Visualization Handbook}, journal = {The Visualization Handbook}, editor = {Hansen, Charles and Johnson, Christopher}, publisher = {Elsevier}, doi = {10.1016/B978-012387582-2/50040-X}, pages = {749 -- 767}, year = {2005}, language = {en} }