@misc{RosanwoPetzProhaskaetal., author = {Rosanwo, Olufemi and Petz, Christoph and Prohaska, Steffen and Hotz, Ingrid and Hege, Hans-Christian}, title = {Dual Streamline Seeding - Method and Implementation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11032}, number = {08-49}, abstract = {This work introduces a novel streamline seeding technique based on dual streamlines that are orthogonal to the vector field, instead of tangential. The greedy algorithm presented here produces a net of orthogonal streamlines that is iteratively refined resulting in good domain coverage and a high degree of continuity and uniformity. The algorithm is easy to implement and efficient, and it naturally extends to curved surfaces.}, language = {en} } @inproceedings{KlindtProhaskaBaumetal.2012, author = {Klindt, Marco and Prohaska, Steffen and Baum, Daniel and Hege, Hans-Christian}, title = {Conveying Archaeological Contexts to Museum Visitors: Case Study Pergamon Exhibition}, series = {VAST12: The 13th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers}, booktitle = {VAST12: The 13th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers}, editor = {Arnold, David and Kaminski, Jaime and Niccolucci, Franco and Stork, Andre}, publisher = {Eurographics Association}, address = {Brighton, UK}, doi = {10.2312/PE/VAST/VAST12S/025-028}, pages = {25 -- 28}, year = {2012}, language = {en} } @inproceedings{KlindtBaumProhaskaetal.2012, author = {Klindt, Marco and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {iCon.text - a customizable iPad app for kiosk applications in museum exhibitions}, series = {EVA 2012 Berlin}, booktitle = {EVA 2012 Berlin}, publisher = {Gesellschaft zur F{\"o}rderung angewandter Informatik e.V.}, address = {Volmerstraße 3, 12489 Berlin}, pages = {150 -- 155}, year = {2012}, language = {en} } @inproceedings{LindowBaumBondaretal.2012, author = {Lindow, Norbert and Baum, Daniel and Bondar, Ana-Nicoleta and Hege, Hans-Christian}, title = {Dynamic Channels in Biomolecular Systems: Path Analysis and Visualization}, series = {Proceedings of IEEE Symposium on Biological Data Visualization (biovis'12)}, booktitle = {Proceedings of IEEE Symposium on Biological Data Visualization (biovis'12)}, doi = {10.1109/BioVis.2012.6378599}, pages = {99 -- 106}, year = {2012}, language = {en} } @incollection{PoethkowHege2012, author = {P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Uncertainty Propagation in DT-MRI Anisotropy Isosurface Extraction}, series = {New Developments in the Visualization and Processing of Tensor Fields}, booktitle = {New Developments in the Visualization and Processing of Tensor Fields}, editor = {Laidlaw, David and Vilanova, Anna}, publisher = {Springer}, address = {Berlin}, pages = {209 -- 225}, year = {2012}, language = {en} } @article{SaparinThomsenProhaskaetal.2005, author = {Saparin, Peter and Thomsen, Jesper and Prohaska, Steffen and Zaikin, Alexei and Kurths, J{\"u}rgen and Hege, Hans-Christian and Gowin, Wolfgang}, title = {Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity}, series = {Acta Astronautica}, volume = {56}, journal = {Acta Astronautica}, number = {9-12}, doi = {10.1016/j.actaastro.2005.01.007}, pages = {820 -- 830}, year = {2005}, language = {en} } @inproceedings{ProhaskaHegeGiehletal.2003, author = {Prohaska, Steffen and Hege, Hans-Christian and Giehl, Michael and Gowin, Wolfgang}, title = {A Virtual Laboratory for Assessment of Bone Biopsies}, series = {14th IAA Humans in Space Symposium}, booktitle = {14th IAA Humans in Space Symposium}, address = {Banff, Alberta, Canada}, pages = {7}, year = {2003}, language = {en} } @inproceedings{ProhaskaHutanuKaehleretal.2004, author = {Prohaska, Steffen and Hutanu, Andrei and K{\"a}hler, Ralf and Hege, Hans-Christian}, title = {Interactive exploration of large remote micro-CT scans}, series = {Proc. IEEE Visualization 2004}, booktitle = {Proc. IEEE Visualization 2004}, address = {Austin, Texas}, doi = {10.1109/VIS.2004.51}, pages = {345 -- 352}, year = {2004}, language = {en} } @inproceedings{ProhaskaHege2002, author = {Prohaska, Steffen and Hege, Hans-Christian}, title = {Fast Visualization of Plane-Like Structures in Voxel Data}, series = {Proceedings of IEEE Visualization 2002}, booktitle = {Proceedings of IEEE Visualization 2002}, editor = {J. Moorhead, Robert and Gross, Markus and I. Joy, Kenneth}, publisher = {IEEE Computer Society Press}, address = {Boston MA, USA}, doi = {10.1109/VISUAL.2002.1183753}, pages = {29 -- 36}, year = {2002}, language = {en} } @inproceedings{SchmidtEhrenbergBaumHege2002, author = {Schmidt-Ehrenberg, Johannes and Baum, Daniel and Hege, Hans-Christian}, title = {Visualizing Dynamic Molecular Conformations}, series = {Proceedings of IEEE Visualization 2002}, booktitle = {Proceedings of IEEE Visualization 2002}, editor = {J. Moorhead, Robert and Gross, Markus and I. Joy, Kenneth}, publisher = {IEEE Computer Society Press}, address = {Boston MA, USA}, doi = {10.1109/VISUAL.2002.1183780}, pages = {235 -- 242}, year = {2002}, language = {en} } @article{ProhaskaHegeGiehletal.2002, author = {Prohaska, Steffen and Hege, Hans-Christian and Giehl, Michael and Gowin, Wolfgang}, title = {Visual Analysis of Trabecular Bone Structure}, series = {Journal of Gravitational Physiology}, volume = {9 (1)}, journal = {Journal of Gravitational Physiology}, pages = {171 -- 172}, year = {2002}, language = {en} } @misc{GowinSaparinFelsenbergetal.2002, author = {Gowin, Wolfgang and Saparin, Peter and Felsenberg, Dieter and Kurths, J{\"u}rgen and Zaikin, Alexei and Prohaska, Steffen and Hege, Hans-Christian}, title = {Regional Structural Skeletal Discordance Assessed by Measures of Complexity}, year = {2002}, language = {en} } @article{GowinSaparinProhaskaetal.2002, author = {Gowin, Wolfgang and Saparin, Peter and Prohaska, Steffen and Hege, Hans-Christian and Felsenberg, Dieter}, title = {Femoral Neck Fractures: Reasons for the Most Common Location of Fractures}, series = {Acta Orthop. Scand. (Suppl. 304)}, volume = {73}, journal = {Acta Orthop. Scand. (Suppl. 304)}, pages = {26}, year = {2002}, language = {en} } @inproceedings{SaparinGowinZaikinetal.2003, author = {Saparin, Peter and Gowin, Wolfgang and Zaikin, Alexei and Thomsen, Jesper and Prohaska, Steffen and Hege, Hans-Christian and Kurths, J{\"u}rgen}, title = {Quantification of Changes in Spatial Structure of Human Bone Biopsies Using 3D Measures of Complexity}, series = {14th IAA Humans in Space Symposium}, booktitle = {14th IAA Humans in Space Symposium}, address = {Banff, Alberta, Canada}, year = {2003}, language = {en} } @inproceedings{ProhaskaHegeGiehletal.2003, author = {Prohaska, Steffen and Hege, Hans-Christian and Giehl, Michael and Gowin, Wolfgang}, title = {Interactive Visualization to Support Quantification of Bone Biopsies}, series = {2nd European Congress 'Achievements in Space Medicine into Health Care Practice and Industry'}, booktitle = {2nd European Congress 'Achievements in Space Medicine into Health Care Practice and Industry'}, address = {Berlin-Adlershof}, year = {2003}, language = {en} } @inproceedings{GowinSaparinProhaskaetal.2003, author = {Gowin, Wolfgang and Saparin, Peter and Prohaska, Steffen and Hege, Hans-Christian and Belle, Stefan and Felsenberg, Dieter}, title = {Architectural Reasons for the Femoral Neck Fracture Location}, series = {2nd European Congress 'Achievements in Space Medicine into Health Care Practice and Industry'}, booktitle = {2nd European Congress 'Achievements in Space Medicine into Health Care Practice and Industry'}, address = {Berlin-Adlershof}, year = {2003}, language = {en} } @inproceedings{HegeWeinkaufProhaskaetal.2004, author = {Hege, Hans-Christian and Weinkauf, Tino and Prohaska, Steffen and Hutanu, Andrei}, title = {Distributed visualization and analysis of fluid dynamics data}, series = {Proc. Fourth International Symposium on Advanced Fluid Information and Transdisciplinary Fluid Integration}, booktitle = {Proc. Fourth International Symposium on Advanced Fluid Information and Transdisciplinary Fluid Integration}, address = {Sendai, Japan}, pages = {145 -- 150}, year = {2004}, language = {en} } @article{RigortGuentherHegerletal.2012, author = {Rigort, Alexander and G{\"u}nther, David and Hegerl, Reiner and Baum, Daniel and Weber, Britta and Prohaska, Steffen and Medalia, Ohad and Baumeister, Wolfgang and Hege, Hans-Christian}, title = {Automated segmentation of electron tomograms for a quantitative description of actin filament networks}, series = {Journal of Structural Biology}, volume = {177}, journal = {Journal of Structural Biology}, doi = {10.1016/j.jsb.2011.08.012}, pages = {135 -- 144}, year = {2012}, language = {en} } @article{PetzOberleithnerSieberetal.2011, author = {Petz, Christoph and Oberleithner, Kilian and Sieber, Moritz and Nayeri, Christian and Paschereit, Oliver and Wygnanski, Israel and Noack, Bernd and Hege, Hans-Christian}, title = {Global Modes in a Swirling Jet Undergoing Vortex Breakdown}, series = {Physics of Fluids}, volume = {23}, journal = {Physics of Fluids}, publisher = {Awarded Visualization; First Prize at 28th Annual Gallery of Fluid Motion exhibit, held at the 63th Annual Meeting of the American Physical Society, Division of Fluid Dynamics (Long Beach, CA, USA, November 21-23, 2010).}, doi = {10.1063/1.3640007}, pages = {091102}, year = {2011}, language = {en} } @article{PoethkowWeberHege2011, author = {P{\"o}thkow, Kai and Weber, Britta and Hege, Hans-Christian}, title = {Probabilistic Marching Cubes}, series = {Computer Graphics Forum}, volume = {30}, journal = {Computer Graphics Forum}, number = {3}, doi = {10.1111/j.1467-8659.2011.01942.x}, pages = {931 -- 940}, year = {2011}, language = {en} } @article{SchmidtEhrenbergBaumHege2001, author = {Schmidt-Ehrenberg, Johannes and Baum, Daniel and Hege, Hans-Christian}, title = {Visually stunning - Molecular conformations}, series = {The Biochemist}, volume = {23}, journal = {The Biochemist}, number = {5}, pages = {22 -- 26}, year = {2001}, language = {en} } @article{WeberGreenanProhaskaetal.2012, author = {Weber, Britta and Greenan, Garrett and Prohaska, Steffen and Baum, Daniel and Hege, Hans-Christian and M{\"u}ller-Reichert, Thomas and Hyman, Anthony and Verbavatz, Jean-Marc}, title = {Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos}, series = {Journal of Structural Biology}, volume = {178}, journal = {Journal of Structural Biology}, number = {2}, doi = {10.1016/j.jsb.2011.12.004}, pages = {129 -- 138}, year = {2012}, language = {en} } @article{LindowBaumHege2011, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Voronoi-Based Extraction and Visualization of Molecular Paths}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2011.259}, pages = {2025 -- 2034}, year = {2011}, language = {en} } @article{LindowBaumProhaskaetal.2010, author = {Lindow, Norbert and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {Accelerated Visualization of Dynamic Molecular Surfaces}, series = {Comput. Graph. Forum}, volume = {29}, journal = {Comput. Graph. Forum}, doi = {10.1111/j.1467-8659.2009.01693.x}, pages = {943 -- 952}, year = {2010}, language = {en} } @inproceedings{ReininghausGuentherHotzetal.2010, author = {Reininghaus, Jan and G{\"u}nther, David and Hotz, Ingrid and Prohaska, Steffen and Hege, Hans-Christian}, title = {TADD: A Computational Framework for Data Analysis Using Discrete Morse Theory}, series = {Mathematical Software - ICMS 2010}, volume = {6327}, booktitle = {Mathematical Software - ICMS 2010}, publisher = {Springer}, doi = {10.1007/978-3-642-15582-6_35}, pages = {198 -- 208}, year = {2010}, language = {en} } @incollection{KastenWeinkaufPetzetal.2010, author = {Kasten, Jens and Weinkauf, Tino and Petz, Christoph and Hotz, Ingrid and Noack, Bernd R. and Hege, Hans-Christian}, title = {Extraction of Coherent Structures from Natural and Actuated Flows}, series = {Active Flow Control II}, volume = {108}, booktitle = {Active Flow Control II}, publisher = {Springer, Berlin}, isbn = {978-3-642-11734-3}, doi = {10.1007/978-3-642-11735-0_24}, pages = {373 -- 387}, year = {2010}, language = {en} } @article{GoubergritsThamsenBertheetal.2010, author = {Goubergrits, Leonid and Thamsen, Bente and Berthe, Andr{\´e} and Poethke, Jens and Kertzscher, Ulrich and Affeld, Klaus and Petz, Christoph and Hege, Hans-Christian and Hoch, Heinrich and Spuler, Andreas}, title = {In Vitro Study of Near-Wall Flow in a Cerebral Aneurysm Model with and without Coils}, series = {American Journal of Neuroradiology}, volume = {31:8}, journal = {American Journal of Neuroradiology}, doi = {10.3174/ajnr.A2121}, pages = {1521 -- 1528}, year = {2010}, language = {en} } @article{LindowBaumBondaretal.2013, author = {Lindow, Norbert and Baum, Daniel and Bondar, Ana-Nicoleta and Hege, Hans-Christian}, title = {Exploring cavity dynamics in biomolecular systems}, series = {BMC Bioinformatics}, volume = {14}, journal = {BMC Bioinformatics}, edition = {(Suppl 19):S5}, doi = {10.1186/1471-2105-14-S19-S5}, year = {2013}, language = {en} } @article{PoethkowPetzHege2013, author = {P{\"o}thkow, Kai and Petz, Christoph and Hege, Hans-Christian}, title = {Approximate Level-Crossing Probabilities for Interactive Visualization of Uncertain Isocontours}, series = {International Journal for Uncertainty Quantification}, volume = {3}, journal = {International Journal for Uncertainty Quantification}, number = {2}, doi = {10.1615/Int.J.UncertaintyQuantification.2012003958}, pages = {101 -- 117}, year = {2013}, language = {en} } @misc{HombergBaumWiebeletal.2014, author = {Homberg, Ulrike and Baum, Daniel and Wiebel, Alexander and Prohaska, Steffen and Hege, Hans-Christian}, title = {Definition, Extraction, and Validation of Pore Structures in Porous Materials}, series = {Topological Methods in Data Analysis and Visualization III}, journal = {Topological Methods in Data Analysis and Visualization III}, editor = {Bremer, Peer-Timo and Hotz, Ingrid and Pascucci, Valerio and Peikert, Ronald}, publisher = {Springer}, doi = {10.1007/978-3-319-04099-8_15}, pages = {235 -- 248}, year = {2014}, language = {en} } @inproceedings{RosanwoPetzProhaskaetal.2009, author = {Rosanwo, Olufemi and Petz, Christoph and Prohaska, Steffen and Hotz, Ingrid and Hege, Hans-Christian}, title = {Dual Streamline Seeding}, series = {Proceedings of the IEEE Pacific Visualization Symposium}, booktitle = {Proceedings of the IEEE Pacific Visualization Symposium}, editor = {Eades, Peter and Ertl, Thomas and Shen, Han-Wei}, address = {Beijing, China}, pages = {9 -- 16}, year = {2009}, language = {en} } @article{GoubergritsWeberPetzetal.2009, author = {Goubergrits, Leonid and Weber, Sarah and Petz, Christoph and Spuler, Andreas and P{\"o}thke, Jens and Berthe, Andr{\´e} and Hege, Hans-Christian}, title = {Wall-PIV as a Near Wall Flow Validation Tool for CFD}, series = {Journal of Visualization}, volume = {12}, journal = {Journal of Visualization}, number = {3}, pages = {241 -- 250}, year = {2009}, language = {en} } @article{GoubergritsWellnhoferKertzscheretal.2009, author = {Goubergrits, Leonid and Wellnhofer, Ernst and Kertzscher, Ulrich and Affeld, Klaus and Petz, Christoph and Hege, Hans-Christian}, title = {Coronary Artery WSS Profiling Using a Geometry Reconstruction Based on Biplane Angiography}, series = {Annals of Biomedical Engineering}, volume = {37}, journal = {Annals of Biomedical Engineering}, number = {4}, publisher = {Springer}, doi = {s10439-009-9656-7}, pages = {682 -- 691}, year = {2009}, language = {en} } @misc{HombergBaumWiebeletal., author = {Homberg, Ulrike and Baum, Daniel and Wiebel, Alexander and Prohaska, Steffen and Hege, Hans-Christian}, title = {Definition, Extraction, and Validation of Pore Structures in Porous Materials}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42510}, abstract = {An intuitive and sparse representation of the void space of porous materials supports the efficient analysis and visualization of interesting qualitative and quantitative parameters of such materials. We introduce definitions of the elements of this void space, here called pore space, based on its distance function, and present methods to extract these elements using the extremal structures of the distance function. The presented methods are implemented by an image processing pipeline that determines pore centers, pore paths and pore constrictions. These pore space elements build a graph that represents the topology of the pore space in a compact way. The representations we derive from μCT image data of realistic soil specimens enable the computation of many statistical parameters and, thus, provide a basis for further visual analysis and application-specific developments. We introduced parts of our pipeline in previous work. In this chapter, we present additional details and compare our results with the analytic computation of the pore space elements for a sphere packing in order to show the correctness of our graph computation.}, language = {en} } @article{BaumLindowHegeetal.2017, author = {Baum, Daniel and Lindow, Norbert and Hege, Hans-Christian and Lepper, Verena and Siopi, Tzulia and Kutz, Frank and Mahlow, Kristin and Mahnke, Heinz-Eberhard}, title = {Revealing hidden text in rolled and folded papyri}, series = {Applied Physics A}, volume = {123}, journal = {Applied Physics A}, number = {3}, doi = {10.1007/s00339-017-0808-6}, pages = {171}, year = {2017}, abstract = {Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds.}, language = {en} } @article{KozlikovaKroneFalketal., author = {Kozl{\´i}kov{\´a}, Barbora and Krone, Michael and Falk, Martin and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian}, title = {Visualization of Biomolecular Structures: State of the Art Revisited}, series = {Computer Graphics Forum}, volume = {36}, journal = {Computer Graphics Forum}, number = {8}, doi = {10.1111/cgf.13072}, pages = {178 -- 204}, abstract = {Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets.}, language = {en} } @article{KroneKozlikovaLindowetal.2016, author = {Krone, Michael and Kozl{\´i}kov{\´a}, Barbora and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Parulek, Julius and Hege, Hans-Christian and Viola, Ivan}, title = {Visual Analysis of Biomolecular Cavities: State of the Art}, series = {Computer Graphics Forum}, volume = {35}, journal = {Computer Graphics Forum}, number = {3}, issn = {1467-8659}, doi = {10.1111/cgf.12928}, pages = {527 -- 551}, year = {2016}, abstract = {In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field.}, language = {en} } @inproceedings{RitterProhaskaBrandetal., author = {Ritter, Zully and Prohaska, Steffen and Brand, R. and Friedmann, A. and Hege, Hans-Christian and Goebbels, J{\"u}rgen and Felsenberg, Dieter}, title = {Osteocytes number and volume in osteoporotic and in healthy bone biopsies analysed using Synchrotron CT: a pilot study}, series = {Proc. ISB 2011}, booktitle = {Proc. ISB 2011}, language = {en} } @article{OberleithnerSieberNayerietal.2011, author = {Oberleithner, Kilian and Sieber, Moritz and Nayeri, Christian and Paschereit, Christian and Petz, Christoph and Hege, Hans-Christian and Noack, Bernd and J. Wygnanski, Israel}, title = {Three-dimensional Coherent Structures of the Swirling Jet Undergoing Vortex breakdown: Stability Analysis and Empirical Mode Construction}, series = {J. Fluid Mech.}, volume = {679}, journal = {J. Fluid Mech.}, doi = {10.1017/jfm.2011.141}, pages = {383 -- 414}, year = {2011}, language = {en} } @misc{GuentherReininghausProhaskaetal.2012, author = {G{\"u}nther, David and Reininghaus, Jan and Prohaska, Steffen and Weinkauf, Tino and Hege, Hans-Christian}, title = {Efficient Computation of a Hierarchy of Discrete 3D Gradient Vector Fields}, series = {Topological Methods in Data Analysis and Visualization II}, journal = {Topological Methods in Data Analysis and Visualization II}, editor = {Peikert, Ronny and Hauser, Helwig and Carr, Hamish}, publisher = {Springer}, doi = {10.1007/978-3-642-23175-9_2}, pages = {15 -- 29}, year = {2012}, language = {en} } @inproceedings{KussProhaskaMeyeretal.2008, author = {Kuß, Anja and Prohaska, Steffen and Meyer, Bj{\"o}rn and Rybak, J{\"u}rgen and Hege, Hans-Christian}, title = {Ontology-Based Visualization of Hierarchical Neuroanatomical Structures}, series = {Proceedings of the Eurographics Workshop on Visual Computing for Biomedicine VCBM 2008}, booktitle = {Proceedings of the Eurographics Workshop on Visual Computing for Biomedicine VCBM 2008}, pages = {177 -- 184}, year = {2008}, language = {en} } @inproceedings{GoubergritsPoethkePetzetal.2008, author = {Goubergrits, Leonid and P{\"o}thke, Jens and Petz, Christoph and Hege, Hans-Christian and Spuler, Andreas and Kertzscher, Ulrich}, title = {3D Bildgebung von zerebralen Aneurysmen}, series = {Bildverarbeitung f{\"u}r die Medizin}, booktitle = {Bildverarbeitung f{\"u}r die Medizin}, doi = {10.1007/978-3-540-78640-5_31}, pages = {153 -- 157}, year = {2008}, language = {en} } @inproceedings{PetzProhaskaGoubergritsetal.2008, author = {Petz, Christoph and Prohaska, Steffen and Goubergrits, Leonid and Kertzscher, Ulrich and Hege, Hans-Christian}, title = {Near-Wall Flow Visualization in Flattened Surface Neighborhoods}, series = {Proc. Simulation and Visualization 2008}, booktitle = {Proc. Simulation and Visualization 2008}, address = {Magdeburg, Germany}, pages = {93 -- 105}, year = {2008}, language = {en} } @article{OberleithnerSieberNayerietal.2010, author = {Oberleithner, Kilian and Sieber, Moritz and Nayeri, Christian and Paschereit, Christian and Petz, Christoph and Hege, Hans-Christian and Noack, Bernd and Wygnanski, Israel}, title = {Self Excited Oscillations in Swirling Jets: Stability Analysis and Empirical Mode Construction}, series = {Bulletin of the American Physical Society}, volume = {55}, journal = {Bulletin of the American Physical Society}, number = {16}, pages = {GE.00008}, year = {2010}, language = {en} } @article{KastenPetzHotzetal.2010, author = {Kasten, Jens and Petz, Christoph and Hotz, Ingrid and Hege, Hans-Christian and Noack, Bernd and Tadmor, Gilead}, title = {Lagrangian Feature Extraction of the Cylinder Wake}, series = {Physics of Fluids}, volume = {22}, journal = {Physics of Fluids}, number = {9}, doi = {10.1063/1.3483220}, pages = {091108}, year = {2010}, language = {en} } @inproceedings{WeberMoellerVerbavatzetal.2011, author = {Weber, Britta and M{\"o}ller, Marit and Verbavatz, Jean-Marc and Baum, Daniel and Hege, Hans-Christian and Prohaska, Steffen}, title = {Fast Tracing of Microtubule Centerlines in Electron Tomograms}, series = {BioVis 2011 Abstracts, 1st IEEE Symposium on Biological Data Visualization}, booktitle = {BioVis 2011 Abstracts, 1st IEEE Symposium on Biological Data Visualization}, year = {2011}, language = {en} } @article{TorsneyWeirSaadMoelleretal.2011, author = {Torsney-Weir, Thomas and Saad, Ahmed and M{\"o}ller, Torsten and Hege, Hans-Christian and Weber, Britta and Verbavatz, Jean-Marc}, title = {Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration}, series = {IEEE Trans. Vis. Comput. Graph.}, volume = {17}, journal = {IEEE Trans. Vis. Comput. Graph.}, number = {12}, pages = {1892 -- 1901}, year = {2011}, language = {en} } @article{LindowBaumHege2012, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Perceptually Linear Parameter Variations}, series = {Computer Graphics Forum}, volume = {31}, journal = {Computer Graphics Forum}, number = {2}, doi = {10.1111/j.1467-8659.2012.03054.x target}, pages = {535 -- 544}, year = {2012}, language = {en} } @article{LindowBaumHege2012, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Interactive Rendering of Materials and Biological Structures on Atomic and Nanoscopic Scale}, series = {Computer Graphics Forum}, volume = {31}, journal = {Computer Graphics Forum}, number = {3}, doi = {10.1111/j.1467-8659.2012.03128.x target}, pages = {1325 -- 1334}, year = {2012}, language = {en} } @article{PetzPoethkowHege2012, author = {Petz, Christoph and P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Probabilistic Local Features in Uncertain Vector Fields with Spatial Correlation}, series = {Computer Graphics Forum}, volume = {31}, journal = {Computer Graphics Forum}, number = {3}, pages = {1045 -- 1054}, year = {2012}, language = {en} } @article{GoubergritsSchallerKertzscheretal.2012, author = {Goubergrits, Leonid and Schaller, Jens and Kertzscher, Ulrich and van den Bruck, Nils and P{\"o}thkow, Kai and Petz, Christoph and Hege, Hans-Christian and Spuler, Andreas}, title = {Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms}, series = {J. R. Soc. Interface}, volume = {9}, journal = {J. R. Soc. Interface}, number = {69}, doi = {10.1098/rsif.2011.0490}, pages = {677 -- 688}, year = {2012}, language = {en} } @article{PetzKastenProhaskaetal.2009, author = {Petz, Christoph and Kasten, Jens and Prohaska, Steffen and Hege, Hans-Christian}, title = {Hierarchical Vortex Regions in Swirling Flow}, series = {Computer Graphics Forum}, volume = {28}, journal = {Computer Graphics Forum}, number = {3}, pages = {863 -- 870}, year = {2009}, language = {en} } @inproceedings{DercksenWeberGuentheretal.2009, author = {Dercksen, Vincent J. and Weber, Britta and G{\"u}nther, David and Oberlaender, Marcel and Prohaska, Steffen and Hege, Hans-Christian}, title = {Automatic alignment of stacks of filament data}, series = {Proc. IEEE International Symposium on Biomedical Imaging}, booktitle = {Proc. IEEE International Symposium on Biomedical Imaging}, publisher = {IEEE press}, address = {Boston, USA}, pages = {971 -- 974}, year = {2009}, language = {en} } @inproceedings{KastenPetzHotzetal.2009, author = {Kasten, Jens and Petz, Christoph and Hotz, Ingrid and Noack, Bernd R. and Hege, Hans-Christian}, title = {Localized Finite-time Lyapunov Exponent for Unsteady Flow Analysis}, series = {Vision Modeling and Visualization}, volume = {1}, booktitle = {Vision Modeling and Visualization}, editor = {Magnor, Marcus and Rosenhahn, Bodo and Theisel, Holger}, publisher = {Universit{\"a}t Magdeburg, Inst. f. Simulation u. Graph.}, isbn = {978-3-9804874-8-1}, pages = {265 -- 274}, year = {2009}, language = {en} } @inproceedings{GuentherMcGuireWalteretal.2010, author = {G{\"u}nther, David and McGuire, Patrick C. and Walter, Sebastian and Weinkauf, Tino and Hege, Hans-Christian}, title = {Extraction of Valley Networks in Mars Elevation Maps}, series = {Proc. European Planetary Science Congress}, volume = {5}, booktitle = {Proc. European Planetary Science Congress}, pages = {EPSC2010 -- 216}, year = {2010}, language = {en} } @inproceedings{ClasenHege2007, author = {Clasen, Malte and Hege, Hans-Christian}, title = {Clipmap-based Terrain Data Synthesis}, series = {Proc. SimVis 2007}, booktitle = {Proc. SimVis 2007}, editor = {Schulze, Thomas and Preim, Bernhard and Schumann, Heidrun}, publisher = {SCS Publishing House e.V.}, pages = {385 -- 398}, year = {2007}, language = {en} } @article{HegeWeinkaufProhaskaetal.2005, author = {Hege, Hans-Christian and Weinkauf, Tino and Prohaska, Steffen and Hutanu, Andrei}, title = {Towards distributed visualization and analysis of large flow data}, series = {JSME International Journal, Series B}, volume = {48 (2)}, journal = {JSME International Journal, Series B}, pages = {241 -- 246}, year = {2005}, language = {en} } @inproceedings{DercksenProhaskaHege2005, author = {Dercksen, Vincent J. and Prohaska, Steffen and Hege, Hans-Christian}, title = {Fast cross-sectional display of large data sets}, series = {IAPR Conference on Machine Vision Applications}, booktitle = {IAPR Conference on Machine Vision Applications}, address = {Tsukuba, Japan}, pages = {336 -- 339}, year = {2005}, language = {en} } @inproceedings{SchmidtEhrenbergHege2005, author = {Schmidt-Ehrenberg, Johannes and Hege, Hans-Christian}, title = {Visual analysis of molecular conformations by means of a dynamic density mixture model}, series = {Computational Life Sciences: First International Symposium, CompLife 2005}, volume = {3695}, booktitle = {Computational Life Sciences: First International Symposium, CompLife 2005}, publisher = {Springer}, address = {Konstanz, Germany}, pages = {229 -- 240}, year = {2005}, language = {en} } @inproceedings{KaehlerProhaskaHutanuetal.2005, author = {K{\"a}hler, Ralf and Prohaska, Steffen and Hutanu, Andrei and Hege, Hans-Christian}, title = {Visualization of time-dependent remote adaptive mesh refinement data}, series = {Proc. IEEE Visualization 2005}, booktitle = {Proc. IEEE Visualization 2005}, address = {Minneapolis, USA}, doi = {10.1109/VISUAL.2005.1532793}, pages = {175 -- 182}, year = {2005}, language = {en} } @inproceedings{ClasenHege2006, author = {Clasen, Malte and Hege, Hans-Christian}, title = {Terrain rendering using spherical clipmaps}, series = {EuroVis 2006 - Eurographics / IEEE VGTC Symposium on Visualization}, booktitle = {EuroVis 2006 - Eurographics / IEEE VGTC Symposium on Visualization}, pages = {91 -- 98}, year = {2006}, language = {en} } @misc{LindowBaumHege, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Atomic Accessibility Radii for Molecular Dynamics Analysis}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-68468}, abstract = {In molecular structure analysis and visualization, the molecule's atoms are often modeled as hard spheres parametrized by their positions and radii. While the atom positions result from experiments or molecular simulations, for the radii typically values are taken from literature. Most often, van der Waals (vdW) radii are used, for which diverse values exist. As a consequence, different visualization and analysis tools use different atomic radii, and the analyses are less objective than often believed. Furthermore, for the geometric accessibility analysis of molecular structures, vdW radii are not well suited. The reason is that during the molecular dynamics simulation, depending on the force field and the kinetic energy in the system, non-bonded atoms can come so close to each other that their vdW spheres intersect. In this paper, we introduce a new kind of atomic radius, called atomic accessibility radius', that better characterizes the accessibility of an atom in a given molecular trajectory. The new radii reflect the movement possibilities of atoms in the simulated physical system. They are computed by solving a linear program that maximizes the radii of the atoms under the constraint that non-bonded spheres do not intersect in the considered molecular trajectory. Using this data-driven approach, the actual accessibility of atoms can be visualized more precisely.}, language = {en} } @article{LindowBaumLeborgneetal., author = {Lindow, Norbert and Baum, Daniel and Leborgne, Morgan and Hege, Hans-Christian}, title = {Interactive Visualization of RNA and DNA Structures}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {25}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {1}, doi = {10.1109/TVCG.2018.2864507}, pages = {967 -- 976}, abstract = {The analysis and visualization of nucleic acids (RNA and DNA) is playing an increasingly important role due to their fundamental importance for all forms of life and the growing number of known 3D structures of such molecules. The great complexity of these structures, in particular, those of RNA, demands interactive visualization to get deeper insights into the relationship between the 2D secondary structure motifs and their 3D tertiary structures. Over the last decades, a lot of research in molecular visualization has focused on the visual exploration of protein structures while nucleic acids have only been marginally addressed. In contrast to proteins, which are composed of amino acids, the ingredients of nucleic acids are nucleotides. They form structuring patterns that differ from those of proteins and, hence, also require different visualization and exploration techniques. In order to support interactive exploration of nucleic acids, the computation of secondary structure motifs as well as their visualization in 2D and 3D must be fast. Therefore, in this paper, we focus on the performance of both the computation and visualization of nucleic acid structure. We present a ray casting-based visualization of RNA and DNA secondary and tertiary structures, which enables for the first time real-time visualization of even large molecular dynamics trajectories. Furthermore, we provide a detailed description of all important aspects to visualize nucleic acid secondary and tertiary structures. With this, we close an important gap in molecular visualization.}, language = {en} } @misc{KlindtBaumProhaskaetal., author = {Klindt, Marco and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {iCon.text - a customizable iPad app for kiosk applications in museum exhibitions}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17731}, abstract = {We present iCon.text, a kiosk platform for the iPad centered around artefacts, whose content and layout can be tailored without programming skills for specific museum exhibitions. The central metaphor to access information is a virtual postcard with one front and a customizable number of back sides that provide details about exhibits to museum visitors in textual and image form. Back sides can link to others cards. Access to these postcards is possible through one or more navigation views that can be navigated to from a navigation bar. The entry point to the application is designed as a multitouch interactive pile of cards in a playful manner that allows visitors of any age an easy approach to the presentation and interaction metaphor. To directly access a certain postcard, a mosaic view can be uitilized to provide an overview about all available exhibits. A category view groups postcards into themes. Locating artefacts on a zoomable map or exhibition floor plan allows for conveying information about spatial contexts between different objects and their location. Furthermore, contexts can be illustrated with a two stage view comprising an overview and corresponding detail views to provide further insights into the spatial, temporal, and thematic contexts of artefacts. The application scaffolding allows the design of bilingual presentations to support exhibitions with an international audience. The logo of the presenting institution or exhibition can be incorporated to display the the kiosk's corporate design branding and to access an imprint or further informations. Usage is logged into files to provide a basis for extracting statistical information about the usage. The details about the exhibits are presented as images and as such impose no limit to the design choices made by the content provider or exhibition designer. The application (enhanced with a panoramic view) has been integrated successfully into a large special exhibition about the ancient city of Pergamon 2011/2012 at the Pergamon Museum Berlin within the interdisciplinary project "Berlin Sculpture Network".}, language = {en} } @article{MahnkeArltBaumetal., author = {Mahnke, Heinz-Eberhard and Arlt, Tobias and Baum, Daniel and Hege, Hans-Christian and Herter, Felix and Lindow, Norbert and Manke, Ingo and Siopi, Tzulia and Menei, Eve and Etienne, Marc and Lepper, Verena}, title = {Virtual unfolding of folded papyri}, series = {Journal of Cultural Heritage}, volume = {41}, journal = {Journal of Cultural Heritage}, publisher = {Elsevier}, doi = {10.1016/j.culher.2019.07.007}, pages = {264 -- 269}, abstract = {The historical importance of ancient manuscripts is unique since they provide information about the heritage of ancient cultures. Often texts are hidden in rolled or folded documents. Due to recent impro- vements in sensitivity and resolution, spectacular disclosures of rolled hidden texts were possible by X-ray tomography. However, revealing text on folded manuscripts is even more challenging. Manual unfolding is often too risky in view of the fragile condition of fragments, as it can lead to the total loss of the document. X-ray tomography allows for virtual unfolding and enables non-destructive access to hid- den texts. We have recently demonstrated the procedure and tested unfolding algorithms on a mockup sample. Here, we present results on unfolding ancient papyrus packages from the papyrus collection of the Mus{\´e}e du Louvre, among them objects folded along approximately orthogonal folding lines. In one of the packages, the first identification of a word was achieved, the Coptic word for "Lord".}, language = {en} } @misc{HoerthBaumKnoeteletal., author = {Hoerth, Rebecca M. and Baum, Daniel and Kn{\"o}tel, David and Prohaska, Steffen and Willie, Bettina M. and Duda, Georg and Hege, Hans-Christian and Fratzl, Peter and Wagermaier, Wolfgang}, title = {Registering 2D and 3D Imaging Data of Bone during Healing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53426}, abstract = {Purpose/Aims of the Study: Bone's hierarchical structure can be visualized using a variety of methods. Many techniques, such as light and electron microscopy generate two-dimensional (2D) images, while micro computed tomography (μCT) allows a direct representation of the three-dimensional (3D) structure. In addition, different methods provide complementary structural information, such as the arrangement of organic or inorganic compounds. The overall aim of the present study is to answer bone research questions by linking information of different 2D and 3D imaging techniques. A great challenge in combining different methods arises from the fact that they usually reflect different characteristics of the real structure. Materials and Methods: We investigated bone during healing by means of μCT and a couple of 2D methods. Backscattered electron images were used to qualitatively evaluate the tissue's calcium content and served as a position map for other experimental data. Nanoindentation and X-ray scattering experiments were performed to visualize mechanical and structural properties. Results: We present an approach for the registration of 2D data in a 3D μCT reference frame, where scanning electron microscopies serve as a methodic link. Backscattered electron images are perfectly suited for registration into μCT reference frames, since both show structures based on the same physical principles. We introduce specific registration tools that have been developed to perform the registration process in a semi-automatic way. Conclusions: By applying this routine, we were able to exactly locate structural information (e.g. mineral particle properties) in the 3D bone volume. In bone healing studies this will help to better understand basic formation, remodeling and mineralization processes.}, language = {en} }