@article{StraubeWinkelmannHoefling, author = {Straube, Arthur and Winkelmann, Stefanie and H{\"o}fling, Felix}, title = {Accurate reduced models for the pH oscillations in the urea-urease reaction confined to giant lipid vesicles}, series = {The Journal of Physical Chemistry B}, volume = {127}, journal = {The Journal of Physical Chemistry B}, number = {13}, doi = {10.1021/acs.jpcb.2c09092}, pages = {2955 -- 2967}, abstract = {This theoretical study concerns a pH oscillator based on the urea-urease reaction confined to giant lipid vesicles. Under suitable conditions, differential transport of urea and hydrogen ion across the unilamellar vesicle membrane periodically resets the pH clock that switches the system from acid to basic, resulting in self-sustained oscillations. We analyse the structure of the phase flow and of the limit cycle, which controls the dynamics for giant vesicles and dominates the pronouncedly stochastic oscillations in small vesicles of submicrometer size. To this end, we derive reduced models, which are amenable to analytic treatments that are complemented by numerical solutions, and obtain the period and amplitude of the oscillations as well as the parameter domain, where oscillatory behavior persists. We show that the accuracy of these predictions is highly sensitive to the employed reduction scheme. In particular, we suggest an accurate two-variable model and show its equivalence to a three-variable model that admits an interpretation in terms of a chemical reaction network. The faithful modeling of a single pH oscillator appears crucial for rationalizing experiments and understanding communication of vesicles and synchronization of rhythms.}, language = {en} } @article{StraubeHoefling, author = {Straube, Arthur and H{\"o}fling, Felix}, title = {Depinning transition of self-propelled particles}, abstract = {A depinning transition is observed in a variety of contexts when a certain threshold force must be applied to drive a system out of an immobile state. A well-studied example is the depinning of colloidal particles from a corrugated landscape, whereas its active-matter analogue has remained unexplored. We discuss how active noise due to self-propulsion impacts the nature of the transition: it causes a change of the critical exponent from 1/2 for quickly reorienting particles to 3/2 for slowly reorienting ones. In between these analytically tractable limits, the drift velocity exhibits a superexponential behavior as is corroborated by high-precision data. Giant diffusion phenomena occur in the two different regimes. Our predictions appear amenable to experimental tests, lay foundations for insight into the depinning of collective variables in active matter, and are relevant for any system with a saddle-node bifurcation in the presence of a bounded noise.}, language = {en} } @article{delRazoWinkelmannKleinetal., author = {del Razo, Mauricio and Winkelmann, Stefanie and Klein, Rupert and H{\"o}fling, Felix}, title = {Chemical diffusion master equation: formulations of reaction-diffusion processes on the molecular level}, series = {Journal of Mathematical Physics}, volume = {64}, journal = {Journal of Mathematical Physics}, number = {1}, doi = {10.1063/5.0129620}, abstract = {The chemical diffusion master equation (CDME) describes the probabilistic dynamics of reaction--diffusion systems at the molecular level [del Razo et al., Lett. Math. Phys. 112:49, 2022]; it can be considered the master equation for reaction--diffusion processes. The CDME consists of an infinite ordered family of Fokker--Planck equations, where each level of the ordered family corresponds to a certain number of particles and each particle represents a molecule. The equations at each level describe the spatial diffusion of the corresponding set of particles, and they are coupled to each other via reaction operators --linear operators representing chemical reactions. These operators change the number of particles in the system, and thus transport probability between different levels in the family. In this work, we present three approaches to formulate the CDME and show the relations between them. We further deduce the non-trivial combinatorial factors contained in the reaction operators, and we elucidate the relation to the original formulation of the CDME, which is based on creation and annihilation operators acting on many-particle probability density functions. Finally we discuss applications to multiscale simulations of biochemical systems among other future prospects.}, language = {en} }