@article{BreuerBussieckFiandetal., author = {Breuer, Thomas and Bussieck, Michael and Fiand, Frederik and Cao, Karl-Ki{\^e}n and Gils, Hans Christian and Wetzel, Manuel and Gleixner, Ambros and Koch, Thorsten and Rehfeldt, Daniel and Khabi, Dmitry}, title = {BEAM-ME: Ein interdisziplin{\"a}rer Beitrag zur Erreichung der Klimaziele}, series = {OR-News : das Magazin der GOR}, journal = {OR-News : das Magazin der GOR}, number = {66}, pages = {6 -- 8}, language = {de} } @inproceedings{GleixnerSteffy, author = {Gleixner, Ambros and Steffy, Daniel}, title = {Linear Programming using Limited-Precision Oracles}, series = {A. Lodi, V. Nagarajan (eds), Integer Programming and Combinatorial Optimization: 20th International Conference, IPCO 2019}, booktitle = {A. Lodi, V. Nagarajan (eds), Integer Programming and Combinatorial Optimization: 20th International Conference, IPCO 2019}, doi = {10.1007/978-3-030-17953-3_30}, pages = {399 -- 412}, abstract = {Linear programming is a foundational tool for many aspects of integer and combinatorial optimization. This work studies the complexity of solving linear programs exactly over the rational numbers through use of an oracle capable of returning limited-precision LP solutions. It is shown that a polynomial number of calls to such an oracle and a polynomial number of bit operations, is sufficient to compute an exact solution to an LP. Previous work has often considered oracles that provide solutions of an arbitrary specified precision. While this leads to polynomial-time algorithms, the level of precision required is often unrealistic for practical computation. In contrast, our work provides a foundation for understanding and analyzing the behavior of the methods that are currently most effective in practice for solving LPs exactly.}, language = {en} } @article{FuriniTraversiBelottietal., author = {Furini, Fabio and Traversi, Emiliano and Belotti, Pietro and Frangioni, Antonio and Gleixner, Ambros and Gould, Nick and Liberti, Leo and Lodi, Andrea and Misener, Ruth and Mittelmann, Hans and Sahinidis, Nikolaos V. and Vigerske, Stefan and Wiegele, Angelika}, title = {QPLIB: A Library of Quadratic Programming Instances}, series = {Mathematical Programming Computation}, volume = {11}, journal = {Mathematical Programming Computation}, number = {2}, doi = {10.1007/s12532-018-0147-4}, pages = {237 -- 265}, abstract = {This paper describes a new instance library for Quadratic Programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function, the constrains, or both are quadratic. QP is a very diverse class of problems, comprising sub-classes of problems ranging from trivial to undecidable. This diversity is reflected in the variety of solution methods for QP, ranging from entirely combinatorial ones to completely continuous ones, including many for which both aspects are fundamental. Selecting a set of instances of QP that is at the same time not overwhelmingly onerous but sufficiently challenging for the many different interested communities is therefore important. We propose a simple taxonomy for QP instances that leads to a systematic problem selection mechanism. We then briefly survey the field of QP, giving an overview of theory, methods and solvers. Finally, we describe how the library was put together, and detail its final contents.}, language = {en} } @article{WeberSagerGleixner, author = {Weber, Tobias and Sager, Sebastian and Gleixner, Ambros}, title = {Solving Quadratic Programs to High Precision using Scaled Iterative Refinement}, series = {Mathematical Programming Computation}, volume = {11}, journal = {Mathematical Programming Computation}, publisher = {Springer Berlin Heidelberg}, doi = {10.1007/s12532-019-00154-6}, pages = {421 -- 455}, abstract = {Quadratic optimization problems (QPs) are ubiquitous, and solution algorithms have matured to a reliable technology. However, the precision of solutions is usually limited due to the underlying floating-point operations. This may cause inconveniences when solutions are used for rigorous reasoning. We contribute on three levels to overcome this issue. First, we present a novel refinement algorithm to solve QPs to arbitrary precision. It iteratively solves refined QPs, assuming a floating-point QP solver oracle. We prove linear convergence of residuals and primal errors. Second, we provide an efficient implementation, based on SoPlex and qpOASES that is publicly available in source code. Third, we give precise reference solutions for the Maros and M{\´e}sz{\´a}ros benchmark library.}, language = {en} } @article{GamrathGleixnerKochetal., author = {Gamrath, Gerald and Gleixner, Ambros and Koch, Thorsten and Miltenberger, Matthias and Kniasew, Dimitri and Schl{\"o}gel, Dominik and Martin, Alexander and Weninger, Dieter}, title = {Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming}, series = {Journal of Computational Mathematics}, volume = {37}, journal = {Journal of Computational Mathematics}, doi = {10.4208/jcm.1905-m2019-0055}, pages = {866 -- 888}, abstract = {The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of robust and future-proof decision support systems. The complexity of industrial-scale supply chain optimization, however, often poses limits to the application of general mixed-integer programming solvers. In this paper we describe algorithmic innovations that help to ensure that MIP solver performance matches the complexity of the large supply chain problems and tight time limits encountered in practice. Our computational evaluation is based on a diverse set, modeling real-world scenarios supplied by our industry partner SAP.}, language = {en} }