@misc{RehfeldtHobbieSchoenheitetal., author = {Rehfeldt, Daniel and Hobbie, Hannes and Sch{\"o}nheit, David and Gleixner, Ambros and Koch, Thorsten and M{\"o}st, Dominik}, title = {A massively parallel interior-point solver for linear energy system models with block structure}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74321}, abstract = {Linear energy system models are often a crucial component of system design and operations, as well as energy policy consulting. Such models can lead to large-scale linear programs, which can be intractable even for state-of-the-art commercial solvers|already the available memory on a desktop machine might not be sufficient. Against this backdrop, this article introduces an interior-point solver that exploits common structures of linear energy system models to efficiently run in parallel on distributed memory systems. The solver is designed for linear programs with doubly bordered block-diagonal constraint matrix and makes use of a Schur complement based decomposition. Special effort has been put into handling large numbers of linking constraints and variables as commonly observed in energy system models. In order to handle this strong linkage, a distributed preconditioning of the Schur complement is used. In addition, the solver features a number of more generic techniques such as parallel matrix scaling and structure-preserving presolving. The implementation is based on the existing parallel interior-point solver PIPS-IPM. We evaluate the computational performance on energy system models with up to 700 million non-zero entries in the constraint matrix, and with more than 200 million columns and 250 million rows. This article mainly concentrates on the energy system model ELMOD, which is a linear optimization model representing the European electricity markets by the use of a nodal pricing market clearing. It has been widely applied in the literature on energy system analyses during the recent years. However, it will be demonstrated that the new solver is also applicable to other energy system models.}, language = {en} } @misc{GleixnerKempkeKochetal., author = {Gleixner, Ambros and Kempke, Nils-Christian and Koch, Thorsten and Rehfeldt, Daniel and Uslu, Svenja}, title = {First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method}, issn = {1438-0064}, doi = {10.1007/978-3-030-48439-2_13}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74084}, abstract = {In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix.}, language = {en} } @article{BreuerBussieckFiandetal., author = {Breuer, Thomas and Bussieck, Michael and Fiand, Frederik and Cao, Karl-Ki{\^e}n and Gils, Hans Christian and Wetzel, Manuel and Gleixner, Ambros and Koch, Thorsten and Rehfeldt, Daniel and Khabi, Dmitry}, title = {BEAM-ME: Ein interdisziplin{\"a}rer Beitrag zur Erreichung der Klimaziele}, series = {OR-News : das Magazin der GOR}, journal = {OR-News : das Magazin der GOR}, number = {66}, pages = {6 -- 8}, language = {de} } @article{GamrathGleixnerKochetal., author = {Gamrath, Gerald and Gleixner, Ambros and Koch, Thorsten and Miltenberger, Matthias and Kniasew, Dimitri and Schl{\"o}gel, Dominik and Martin, Alexander and Weninger, Dieter}, title = {Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming}, series = {Journal of Computational Mathematics}, volume = {37}, journal = {Journal of Computational Mathematics}, doi = {10.4208/jcm.1905-m2019-0055}, pages = {866 -- 888}, abstract = {The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of robust and future-proof decision support systems. The complexity of industrial-scale supply chain optimization, however, often poses limits to the application of general mixed-integer programming solvers. In this paper we describe algorithmic innovations that help to ensure that MIP solver performance matches the complexity of the large supply chain problems and tight time limits encountered in practice. Our computational evaluation is based on a diverse set, modeling real-world scenarios supplied by our industry partner SAP.}, language = {en} }