@inproceedings{ZachowHierlErdmann2004, author = {Zachow, Stefan and Hierl, Thomas and Erdmann, Bodo}, title = {{\"U}ber die Genauigkeit einer 3D Weichgewebepr{\"a}diktion in der MKG-Cirurgie}, series = {Workshop 'Bildverarbeitung f{\"u}r die Medizin' (BVM)}, booktitle = {Workshop 'Bildverarbeitung f{\"u}r die Medizin' (BVM)}, address = {Berlin, Germany}, pages = {75 -- 79}, year = {2004}, language = {en} } @article{KoberErdmannHellmichetal.2006, author = {Kober, C. and Erdmann, Bodo and Hellmich, Christian and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Validation of interdependency between inner structure visualization and structural mechanics simulation}, series = {Int. Poster J. Dent. Oral Med.}, journal = {Int. Poster J. Dent. Oral Med.}, year = {2006}, language = {en} } @article{KoberErdmannHellmichetal.2006, author = {Kober, C. and Erdmann, Bodo and Hellmich, Christian and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Validation of interdependency between inner structure visualization and structural mechanics simulation}, series = {Int. Poster J. Dent. Oral Med.}, journal = {Int. Poster J. Dent. Oral Med.}, year = {2006}, language = {en} } @misc{WeiserErdmannSchenkletal.2017, author = {Weiser, Martin and Erdmann, Bodo and Schenkl, Sebastian and Muggenthaler, Holger and Hubig, Michael and Mall, Gita and Zachow, Stefan}, title = {Uncertainty in Temperature-Based Determination of Time of Death}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63818}, year = {2017}, abstract = {Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types. From that we identify the most crucial parameters to measure or estimate, and obtain a local uncertainty quantifcation for the ToD.}, language = {en} } @article{WeiserErdmannSchenkletal., author = {Weiser, Martin and Erdmann, Bodo and Schenkl, Sebastian and Muggenthaler, Holger and Hubig, Michael and Mall, Gita and Zachow, Stefan}, title = {Uncertainty in Temperature-Based Determination of Time of Death}, series = {Heat and Mass Transfer}, volume = {54}, journal = {Heat and Mass Transfer}, number = {9}, publisher = {Springer}, doi = {10.1007/s00231-018-2324-4}, pages = {2815 -- 2826}, abstract = {Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types.}, language = {en} } @misc{LangErdmannRoitzsch, author = {Lang, Jens and Erdmann, Bodo and Roitzsch, Rainer}, title = {Three-Dimensional Fully Adaptive Solution of Thermo-Diffusive Flame Propagation Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2879}, number = {SC-97-18}, abstract = {In this paper we present a self--adaptive finite element method to solve flame propagation problems in 3D. An implicit time integrator of Rosenbrock type is coupled with a multilevel approach in space. The proposed method is applied to an unsteady thermo--diffusive combustion model to demonstrate its potential for the solution of complicated problems.}, language = {en} } @inproceedings{LangErdmannRoitzsch1997, author = {Lang, Jens and Erdmann, Bodo and Roitzsch, Rainer}, title = {Three-Dimensional Fully Adaptive Solution of Thermo-Diffusive Flame Propagation Problems}, series = {Numerical Methods in Thermal Problems}, booktitle = {Numerical Methods in Thermal Problems}, editor = {Lewis, R.}, publisher = {Pineridge Press, Swansea, UK}, pages = {857 -- 862}, year = {1997}, language = {en} } @inproceedings{KoberErdmannHellmichetal.2005, author = {Kober, C. and Erdmann, Bodo and Hellmich, Christian and Sader, Robert and Zeilhofer, Hans-Florian}, title = {The Influence of the Periodontal Ligament on Overall Stress/Strain Profiles of a Human Mandible}, series = {Proc. of 23rd CADFEM Users' Meeting, Int. Congress on FEM Technology, Biomechanics}, booktitle = {Proc. of 23rd CADFEM Users' Meeting, Int. Congress on FEM Technology, Biomechanics}, editor = {CADFEM GmbH, Grafing}, address = {Bonn, Germany}, pages = {1 -- 10}, year = {2005}, language = {en} } @article{ErdmannLangSeebass1999, author = {Erdmann, Bodo and Lang, Jens and Seebass, Martin}, title = {The Impact of a Nonlinear Heat Transfer Model for Temperature Control in Regional Hyperthermia}, series = {IEEE Transactions on Biomedical Engineering}, volume = {49}, journal = {IEEE Transactions on Biomedical Engineering}, number = {9}, pages = {1129 -- 1138}, year = {1999}, language = {en} } @misc{RoitzschErdmannLang, author = {Roitzsch, Rainer and Erdmann, Bodo and Lang, Jens}, title = {The Benefits of Modularization: from KASKADE to KARDOS}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3586}, number = {SC-98-15}, abstract = {KARDOS solves nonlinear evolution problems in 1, 2, and 3D. An adaptive multilevel finite element algorithm is used to solve the spatial problems arising from linearly implicit discretization methods in time. Local refinement and derefinement techniques are used to handle the development of the mesh over time. The software engineering techniques used to implement the modules of the KASKADE toolbox are reviewed and their application to the extended problem class is described. A notification system and dynamic construction of records are discussed and their values for the implementation of a mesh transfer operation are shown. The need for low-level and high--level interface elements of a module is discussed for the assembling procedure of KARDOS. At the end we will summarize our experiences.}, language = {en} } @inproceedings{RoitzschLangErdmann1998, author = {Roitzsch, Rainer and Lang, Jens and Erdmann, Bodo}, title = {The Benefits of Modularization}, series = {Proc. 14th GAMM-Seminar Kiel on 'Concepts of Numerical Software}, booktitle = {Proc. 14th GAMM-Seminar Kiel on 'Concepts of Numerical Software}, publisher = {did not appear}, year = {1998}, language = {en} } @inproceedings{ErdmannLangRoitzschetal.1998, author = {Erdmann, Bodo and Lang, Jens and Roitzsch, Rainer and Lourenco, Maria Jos{\´e} and Rosa, S. and de Castro, C.A. and Albuquerque, C.}, title = {Simulation of the Transient Heating in an Unsymmetrical Coated Hot-Strip Sensor With a Self-Adaptive Finite Element Method}, series = {Proc. 5th Asian Thermophysical Properties Conference}, volume = {1}, booktitle = {Proc. 5th Asian Thermophysical Properties Conference}, editor = {Kim, M. and Ro, S.}, address = {Seoul, South Corea}, pages = {91 -- 94}, year = {1998}, language = {en} } @misc{LourencoRosaCastroetal., author = {Lourenco, Maria Jos{\´e} and Rosa, Samuel Costa S. and Castro, Carlos Alberto Nieto de and Albuquerque, C. and Erdmann, Bodo and Lang, Jens and Roitzsch, Rainer}, title = {Simulation of the Transient Heating in an Unsymmetrical Coated Hot--Strip Sensor with a Self--Adaptive Finite Element Method}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3656}, number = {SC-98-22}, abstract = {The transient heating in an unsymmetrical coated hot--strip sensor was simulated with a self--adaptive finite element method. The first tests of this model show that it can determine with a small error the thermal conductivity of liquids, from the transient temperature rise in the hot--strip, deposited in a substrate and coated by an alumina spray.}, language = {en} } @misc{KoberErdmannSaderetal., author = {Kober, Cornelia and Erdmann, Bodo and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Simulation of the Human Mandible: Comparison of Bone Mineral Density and Stress/Strain Profiles due to Masticatory Muscles' Traction}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7458}, number = {03-23}, abstract = {The correlation of the inner architecture of bone and its functional loading was already stated by Wolff in 1892. Our objective is to demonstrate this interdependence in the case of the human mandible. For this purpose, stress/strain profiles occuring at a human lateral bite were simulated. Additionally, by a combination of computer graphics modules, a three--dimensional volumetric visualization of bone mineral density could be given. Qualitative correspondences between the density profile of the jaw and the simulated stress/strain profiles could be pointed out. In the long run, this might enable the use of the simulation for diagnosis and prognosis. The solution of the underlying partial differential equations describing linear elastic material behaviour was provided by an adaptive finite element method. Estimates of the discretization errors, local grid refinement, and multilevel techniques guaranteed the reliability and efficiency of the method.}, language = {en} } @inproceedings{KoberErdmannSaderetal.2003, author = {Kober, C. and Erdmann, Bodo and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Simulation of the Human Mandible}, series = {Proceedings of 10th Workshop on The Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields}, booktitle = {Proceedings of 10th Workshop on The Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields}, address = {Ulm, Germany}, year = {2003}, language = {en} } @inproceedings{KoberErdmannLangetal.2004, author = {Kober, C. and Erdmann, Bodo and Lang, Jens and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Sensitivity of the Temporomandibular Joint Capsule for the Structural Behaviour of the Human Mandible}, series = {Proc. BMT 2004}, volume = {49-2}, booktitle = {Proc. BMT 2004}, address = {Ilmenau, Deutschland}, pages = {372 -- 373}, year = {2004}, language = {en} } @misc{ErdmannLangSeebass, author = {Erdmann, Bodo and Lang, Jens and Seebass, Martin}, title = {Optimization of Temperature Distributions for Regional Hyperthermia Based on a Nonlinear Heat Transfer Model}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3283}, number = {SC-97-59}, abstract = {We describe an optimization process specially designed for regional hyperthermia of deap seated tumors in order to achieve desired steady--state temperature distributions. A nonlinear three--dimensional heat--transfer model based on temperature--dependent blood perfusion is applied to predict the temperature. Optimal heating is obtained by minimizing an integral object function which measures the distance between desired and model predicted temperatures. Sequential minima are calculated from successively improved constant--rate perfusion models employing a damped Newton method in an inner iteration. Numerical results for a Sigma 60 applicator are presented. This work has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Sonderforschungsbereich 273 \glqq Hyperthermie: Methodik und Klinik \grqq .}, language = {en} } @inproceedings{ErdmannLangSeebass1998, author = {Erdmann, Bodo and Lang, Jens and Seebass, Martin}, title = {Optimization of Temperature Distributions for Regional Hyperthermia based on a Nonlinear Heat Transfer Model}, series = {Biotransport}, volume = {858}, booktitle = {Biotransport}, editor = {Diller, K.}, pages = {36 -- 46}, year = {1998}, language = {en} } @misc{WeiserFreytagErdmannetal., author = {Weiser, Martin and Freytag, Yvonne and Erdmann, Bodo and Hubig, Michael and Mall, Gita}, title = {Optimal Design of Experiments for Estimating the Time of Death in Forensic Medicine}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-67247}, abstract = {Estimation of time of death based on a single measurement of body core temperature is a standard procedure in forensic medicine. Mechanistic models using simulation of heat transport promise higher accuracy than established phenomenological models in particular in nonstandard situations, but involve many not exactly known physical parameters. Identifying both time of death and physical parameters from multiple temperature measurements is one possibility to reduce the uncertainty significantly. In this paper, we consider the inverse problem in a Bayesian setting and perform both local and sampling-based uncertainty quantification, where proper orthogonal decomposition is used as model reduction for fast solution of the forward model. Based on the local uncertainty quantification, optimal design of experiments is performed in order to minimize the uncertainty in the time of death estimate for a given number of measurements. For reasons of practicability, temperature acquisition points are selected from a set of candidates in different spatial and temporal locations. Applied to a real corpse model, a significant accuracy improvement is obtained already with a small number of measurements.}, language = {en} } @article{WeiserFreytagErdmannetal., author = {Weiser, Martin and Freytag, Yvonne and Erdmann, Bodo and Hubig, Michael and Mall, Gita}, title = {Optimal Design of Experiments for Estimating the Time of Death in Forensic Medicine}, series = {Inverse Problems}, volume = {34}, journal = {Inverse Problems}, number = {12}, doi = {10.1088/1361-6420/aae7a5}, pages = {125005}, abstract = {Estimation of time of death based on a single measurement of body core temperature is a standard procedure in forensic medicine. Mechanistic models using simulation of heat transport promise higher accuracy than established phenomenological models in particular in nonstandard situations, but involve many not exactly known physical parameters. Identifying both time of death and physical parameters from multiple temperature measurements is one possibility to reduce the uncertainty significantly. In this paper, we consider the inverse problem in a Bayesian setting and perform both local and sampling-based uncertainty quantification, where proper orthogonal decomposition is used as model reduction for fast solution of the forward model. Based on the local uncertainty quantification, optimal design of experiments is performed in order to minimize the uncertainty in the time of death estimate for a given number of measurements. For reasons of practicability, temperature acquisition points are selected from a set of candidates in different spatial and temporal locations. Applied to a real corpse model, a significant accuracy improvement is obtained already with a small number of measurements.}, language = {en} }