@inproceedings{ZachowHierlErdmann2004, author = {Zachow, Stefan and Hierl, Thomas and Erdmann, Bodo}, title = {{\"U}ber die Genauigkeit einer 3D Weichgewebepr{\"a}diktion in der MKG-Cirurgie}, series = {Workshop 'Bildverarbeitung f{\"u}r die Medizin' (BVM)}, booktitle = {Workshop 'Bildverarbeitung f{\"u}r die Medizin' (BVM)}, address = {Berlin, Germany}, pages = {75 -- 79}, year = {2004}, language = {en} } @article{KoberErdmannHellmichetal.2006, author = {Kober, C. and Erdmann, Bodo and Hellmich, Christian and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Validation of interdependency between inner structure visualization and structural mechanics simulation}, series = {Int. Poster J. Dent. Oral Med.}, journal = {Int. Poster J. Dent. Oral Med.}, year = {2006}, language = {en} } @article{KoberErdmannHellmichetal.2006, author = {Kober, C. and Erdmann, Bodo and Hellmich, Christian and Sader, Robert and Zeilhofer, Hans-Florian}, title = {Validation of interdependency between inner structure visualization and structural mechanics simulation}, series = {Int. Poster J. Dent. Oral Med.}, journal = {Int. Poster J. Dent. Oral Med.}, year = {2006}, language = {en} } @misc{WeiserErdmannSchenkletal.2017, author = {Weiser, Martin and Erdmann, Bodo and Schenkl, Sebastian and Muggenthaler, Holger and Hubig, Michael and Mall, Gita and Zachow, Stefan}, title = {Uncertainty in Temperature-Based Determination of Time of Death}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63818}, year = {2017}, abstract = {Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types. From that we identify the most crucial parameters to measure or estimate, and obtain a local uncertainty quantifcation for the ToD.}, language = {en} } @article{WeiserErdmannSchenkletal., author = {Weiser, Martin and Erdmann, Bodo and Schenkl, Sebastian and Muggenthaler, Holger and Hubig, Michael and Mall, Gita and Zachow, Stefan}, title = {Uncertainty in Temperature-Based Determination of Time of Death}, series = {Heat and Mass Transfer}, volume = {54}, journal = {Heat and Mass Transfer}, number = {9}, publisher = {Springer}, doi = {10.1007/s00231-018-2324-4}, pages = {2815 -- 2826}, abstract = {Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types.}, language = {en} } @misc{LangErdmannRoitzsch, author = {Lang, Jens and Erdmann, Bodo and Roitzsch, Rainer}, title = {Three-Dimensional Fully Adaptive Solution of Thermo-Diffusive Flame Propagation Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2879}, number = {SC-97-18}, abstract = {In this paper we present a self--adaptive finite element method to solve flame propagation problems in 3D. An implicit time integrator of Rosenbrock type is coupled with a multilevel approach in space. The proposed method is applied to an unsteady thermo--diffusive combustion model to demonstrate its potential for the solution of complicated problems.}, language = {en} } @inproceedings{LangErdmannRoitzsch1997, author = {Lang, Jens and Erdmann, Bodo and Roitzsch, Rainer}, title = {Three-Dimensional Fully Adaptive Solution of Thermo-Diffusive Flame Propagation Problems}, series = {Numerical Methods in Thermal Problems}, booktitle = {Numerical Methods in Thermal Problems}, editor = {Lewis, R.}, publisher = {Pineridge Press, Swansea, UK}, pages = {857 -- 862}, year = {1997}, language = {en} } @inproceedings{KoberErdmannHellmichetal.2005, author = {Kober, C. and Erdmann, Bodo and Hellmich, Christian and Sader, Robert and Zeilhofer, Hans-Florian}, title = {The Influence of the Periodontal Ligament on Overall Stress/Strain Profiles of a Human Mandible}, series = {Proc. of 23rd CADFEM Users' Meeting, Int. Congress on FEM Technology, Biomechanics}, booktitle = {Proc. of 23rd CADFEM Users' Meeting, Int. Congress on FEM Technology, Biomechanics}, editor = {CADFEM GmbH, Grafing}, address = {Bonn, Germany}, pages = {1 -- 10}, year = {2005}, language = {en} } @article{ErdmannLangSeebass1999, author = {Erdmann, Bodo and Lang, Jens and Seebass, Martin}, title = {The Impact of a Nonlinear Heat Transfer Model for Temperature Control in Regional Hyperthermia}, series = {IEEE Transactions on Biomedical Engineering}, volume = {49}, journal = {IEEE Transactions on Biomedical Engineering}, number = {9}, pages = {1129 -- 1138}, year = {1999}, language = {en} } @misc{RoitzschErdmannLang, author = {Roitzsch, Rainer and Erdmann, Bodo and Lang, Jens}, title = {The Benefits of Modularization: from KASKADE to KARDOS}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3586}, number = {SC-98-15}, abstract = {KARDOS solves nonlinear evolution problems in 1, 2, and 3D. An adaptive multilevel finite element algorithm is used to solve the spatial problems arising from linearly implicit discretization methods in time. Local refinement and derefinement techniques are used to handle the development of the mesh over time. The software engineering techniques used to implement the modules of the KASKADE toolbox are reviewed and their application to the extended problem class is described. A notification system and dynamic construction of records are discussed and their values for the implementation of a mesh transfer operation are shown. The need for low-level and high--level interface elements of a module is discussed for the assembling procedure of KARDOS. At the end we will summarize our experiences.}, language = {en} }