@article{DonatiWeberKeller, author = {Donati, Luca and Weber, Marcus and Keller, Bettina G.}, title = {A review of Girsanov Reweighting and of Square Root Approximation for building molecular Markov State Models}, series = {Journal of Mathematical Physics}, volume = {63}, journal = {Journal of Mathematical Physics}, number = {12}, publisher = {AIP Publishing}, doi = {10.1063/5.0127227}, pages = {123306-1 -- 123306-21}, abstract = {Dynamical reweighting methods permit to estimate kinetic observables of a stochastic process governed by a target potential U(x) from trajectories that have been generated at a different potential V(x). In this article, we present Girsanov reweighting and Square Root Approximation (SqRA): the first method reweights path probabilities exploiting the Girsanov theorem and can be applied to Markov State Models (MSMs) to reweight transition probabilities; the second method was originally developed to discretize the Fokker-Planck operator into a transition rate matrix, but here we implement it into a reweighting scheme for transition rates. We begin by reviewing the theoretical background of the methods, then present two applications relevant to Molecular Dynamics (MD), highlighting their strengths and weaknesses.}, language = {en} } @article{DonatiWeber, author = {Donati, Luca and Weber, Marcus}, title = {Assessing transition rates as functions of environmental variables}, series = {The Journal of Chemical Physics}, volume = {157}, journal = {The Journal of Chemical Physics}, number = {22}, publisher = {AIP Publishing}, doi = {10.1063/5.0109555}, pages = {224103-1 -- 224103-14}, abstract = {We present a method to estimate the transition rates of molecular systems under different environmental conditions which cause the formation or the breaking of bonds and require the sampling of the Grand Canonical Ensemble. For this purpose, we model the molecular system in terms of probable "scenarios", governed by different potential energy functions, which are separately sampled by classical MD simulations. Reweighting the canonical distribution of each scenario according to specific environmental variables, we estimate the grand canonical distribution, then we use the Square Root Approximation (SqRA) method to discretize the Fokker-Planck operator into a rate matrix and the robust Perron Cluster Cluster Analysis (PCCA+) method to coarse-grain the kinetic model. This permits to efficiently estimate the transition rates of conformational states as functions of environmental variables, for example, the local pH at a cell membrane. In this work we formalize the theoretical framework of the procedure and we present a numerical experiment comparing the results with those provided by a constant-pH method based on non-equilibrium Molecular Dynamics Monte Carlo simulations. The method is relevant for the development of new drug design strategies which take into account how the cellular environment influences biochemical processes.}, language = {en} }