@misc{KostreSunkaraSchuetteetal., author = {Kostr{\´e}, Margarita and Sunkara, Vikram and Sch{\"u}tte, Christof and Djurdjevac Conrad, Nataša}, title = {Understanding the Romanization Spreading on Historical Interregional Networks in Northern Tunisia}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86764}, abstract = {Spreading processes are important drivers of change in social systems. To understand the mechanisms of spreading it is fundamental to have information about the underlying contact network and the dynamical parameters of the process. However, in many real-wold examples, this information is not known and needs to be inferred from data. State-of-the-art spreading inference methods have mostly been applied to modern social systems, as they rely on availability of very detailed data. In this paper we study the inference challenges for historical spreading processes, for which only very fragmented information is available. To cope with this problem, we extend existing network models by formulating a model on a mesoscale with temporal spreading rate. Furthermore, we formulate the respective parameter inference problem for the extended model. We apply our approach to the romanization process of Northern Tunisia, a scarce dataset, and study properties of the inferred time-evolving interregional networks. As a result, we show that (1) optimal solutions consist of very different network structures and spreading rate functions; and that (2) these diverse solutions produce very similar spreading patterns. Finally, we discuss how inferred dominant interregional connections are related to available archaeological traces. Historical networks resulting from our approach can help understanding complex processes of cultural change in ancient times.}, language = {en} } @article{KostreSunkaraSchuetteetal.2022, author = {Kostr{\´e}, Margarita and Sunkara, Vikram and Sch{\"u}tte, Christof and Djurdjevac Conrad, Natasa}, title = {Understanding the Romanization Spreading on Historical Interregional Networks in Northern Tunisia}, series = {Applied Network Science}, volume = {7}, journal = {Applied Network Science}, publisher = {Springer Nature}, doi = {10.1007/s41109-022-00492-w}, pages = {18}, year = {2022}, abstract = {Spreading processes are important drivers of change in social systems. To understand the mechanisms of spreading it is fundamental to have information about the underlying contact network and the dynamical parameters of the process. However, in many real-wold examples, this information is not known and needs to be inferred from data. State-of-the-art spreading inference methods have mostly been applied to modern social systems, as they rely on availability of very detailed data. In this paper we study the inference challenges for historical spreading processes, for which only very fragmented information is available. To cope with this problem, we extend existing network models by formulating a model on a mesoscale with temporal spreading rate. Furthermore, we formulate the respective parameter inference problem for the extended model. We apply our approach to the romanization process of Northern Tunisia, a scarce dataset, and study properties of the inferred time-evolving interregional networks. As a result, we show that (1) optimal solutions consist of very different network structures and spreading rate functions; and that (2) these diverse solutions produce very similar spreading patterns. Finally, we discuss how inferred dominant interregional connections are related to available archaeological traces. Historical networks resulting from our approach can help understanding complex processes of cultural change in ancient times.}, language = {en} } @article{WulkowConradDjurdjevacConradetal., author = {Wulkow, Hanna and Conrad, Tim and Djurdjevac Conrad, Natasa and M{\"u}ller, Sebastian A. and Nagel, Kai and Sch{\"u}tte, Christof}, title = {Prediction of Covid-19 spreading and optimal coordination of counter-measures: From microscopic to macroscopic models to Pareto fronts}, series = {PLOS One}, volume = {16}, journal = {PLOS One}, number = {4}, publisher = {Public Library of Science}, doi = {10.1371/journal.pone.0249676}, language = {en} } @article{ThielDjurdjevacConradNtinietal., author = {Thiel, Denise and Djurdjevac Conrad, Natasa and Ntini, Evgenia and Peschutter, Ria and Siebert, Heike and Marsico, Annalisa}, title = {Identifying lncRNA-mediated regulatory modules via ChIA-PET network analysis}, series = {BMC Bioinformatics}, volume = {20}, journal = {BMC Bioinformatics}, number = {1471-2105}, doi = {10.1186/s12859-019-2900-8}, abstract = {Background: Although several studies have provided insights into the role of long non-coding RNAs (lncRNAs), the majority of them have unknown function. Recent evidence has shown the importance of both lncRNAs and chromatin interactions in transcriptional regulation. Although network-based methods, mainly exploiting gene-lncRNA co-expression, have been applied to characterize lncRNA of unknown function by means of 'guilt-by-association', no strategy exists so far which identifies mRNA-lncRNA functional modules based on the 3D chromatin interaction graph. Results: To better understand the function of chromatin interactions in the context of lncRNA-mediated gene regulation, we have developed a multi-step graph analysis approach to examine the RNA polymerase II ChIA-PET chromatin interaction network in the K562 human cell line. We have annotated the network with gene and lncRNA coordinates, and chromatin states from the ENCODE project. We used centrality measures, as well as an adaptation of our previously developed Markov State Models (MSM) clustering method, to gain a better understanding of lncRNAs in transcriptional regulation. The novelty of our approach resides in the detection of fuzzy regulatory modules based on network properties and their optimization based on co-expression analysis between genes and gene-lncRNA pairs. This results in our method returning more bona fide regulatory modules than other state-of-the art approaches for clustering on graphs. Conclusions: Interestingly, we find that lncRNA network hubs tend to be significantly enriched in evolutionary conserved lncRNAs and enhancer-like functions. We validated regulatory functions for well known lncRNAs, such as MALAT1 and the enhancer-like lncRNA FALEC. In addition, by investigating the modular structure of bigger components we mine putative regulatory functions for uncharacterized lncRNAs.}, language = {en} } @article{SarichDjurdjevacConradBruckneretal.2014, author = {Sarich, Marco and Djurdjevac Conrad, Natasa and Bruckner, Sharon and Conrad, Tim and Sch{\"u}tte, Christof}, title = {Modularity revisited: A novel dynamics-based concept for decomposing complex networks}, series = {Journal of Computational Dynamics}, volume = {1}, journal = {Journal of Computational Dynamics}, number = {1}, doi = {10.3934/jcd.2014.1.191}, pages = {191 -- 212}, year = {2014}, language = {en} }