@misc{DjurdjevacConradBanischSchuette, author = {Djurdjevac Conrad, Natasa and Banisch, Ralf and Sch{\"u}tte, Christof}, title = {Modularity of Directed Networks: Cycle Decomposition Approach}, issn = {1438-0064}, doi = {10.3934/jcd.2015.2.1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-51166}, abstract = {The problem of decomposing networks into modules (or clusters) has gained much attention in recent years, as it can account for a coarsegrained description of complex systems, often revealing functional subunits of these systems. A variety of module detection algorithms have been proposed, mostly oriented towards finding hard partitionings of undirected networks. Despite the increasing number of fuzzy clustering methods for directed networks, many of these approaches tend to neglect important directional information. In this paper, we present a novel random walk based approach for finding fuzzy partitions of directed, weighted networks, where edge directions play a crucial role in defining how well nodes in a module are interconnected. We will show that cycle decomposition of a random walk process connects the notion of network modules and information transport in a network, leading to a new, symmetric measure of node communication. Finally, we will use this measure to introduce a communication graph, for which we will show that although being undirected it inherits all necessary information about modular structures from the original network.}, language = {en} } @misc{BanischDjurdjevacConradSchuette, author = {Banisch, Ralf and Djurdjevac Conrad, Natasa and Sch{\"u}tte, Christof}, title = {Reactive flows and unproductive cycles for random walks on complex networks}, issn = {1438-0064}, doi = {10.1140/epjst/e2015-02417-8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-54239}, abstract = {We present a comprehensive theory for analysis and understanding of transition events between an initial set A and a target set B for general ergodic finite-state space Markov chains or jump processes, including random walks on networks as they occur, e.g., in Markov State Modelling in molecular dynamics. The theory allows us to decompose the probability flow generated by transition events between the sets A and B into the productive part that directly flows from A to B through reaction pathways and the unproductive part that runs in loops and is supported on cycles of the underlying network. It applies to random walks on directed networks and nonreversible Markov processes and can be seen as an extension of Transition Path Theory. Information on reaction pathways and unproductive cycles results from the stochastic cycle decomposition of the underlying network which also allows to compute their corresponding weight, thus characterizing completely which structure is used how often in transition events. The new theory is illustrated by an application to a Markov State Model resulting from weakly damped Langevin dynamics where the unproductive cycles are associated with periodic orbits of the underlying Hamiltonian dynamics.}, language = {en} } @article{DjurdjevacConradWeberSchuette, author = {Djurdjevac Conrad, Natasa and Weber, Marcus and Sch{\"u}tte, Christof}, title = {Finding dominant structures of nonreversible Markov processes}, series = {Multiscale Modeling and Simulation}, volume = {14}, journal = {Multiscale Modeling and Simulation}, number = {4}, doi = {10.1137/15M1032272}, pages = {1319 -- 1340}, language = {en} } @misc{BanischSchuetteDjurdjevacConrad, author = {Banisch, Ralf and Sch{\"u}tte, Christof and Djurdjevac Conrad, Natasa}, title = {Module Detection in Directed Real-World Networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49849}, abstract = {We investigate the problem of finding modules (or clusters, communities) in directed networks. Until now, most articles on this topic have been oriented towards finding complete network partitions despite the fact that this often is unwanted. We present a novel random walk based approach for non-complete partitions of the directed network into modules in which some nodes do not belong to only one of the modules but to several or to none at all. The new random walk process is reversible even for directed networks but inherits all necessary information about directions and structure of the original network. We demonstrate the performance of the new method in application to a real-world earthquake network.}, language = {en} } @phdthesis{DjurdjevacConrad, author = {Djurdjevac Conrad, Natasa}, title = {Methods for analyzing complex networks using random walker}, language = {en} } @article{BanischDjurdjevacConrad, author = {Banisch, Ralf and Djurdjevac Conrad, Natasa}, title = {Cycle-flow-based module detection in directed recurrence networks}, series = {EPL (Europhysics Letters)}, volume = {108}, journal = {EPL (Europhysics Letters)}, number = {6}, doi = {10.1209/0295-5075/108/68008}, language = {en} } @article{LorenzWolfBraunetal., author = {Lorenz, Philipp and Wolf, Frederik and Braun, Jonas and Djurdjevac Conrad, Natasa and H{\"o}vel, Philipp}, title = {Capturing the Dynamics of Hashtag-Communities}, series = {International Workshop on Complex Networks and their Applications}, journal = {International Workshop on Complex Networks and their Applications}, doi = {10.1007/978-3-319-72150-7_33}, pages = {401 -- 413}, language = {en} } @misc{DjurdjevacConradWeberSchuette, author = {Djurdjevac Conrad, Natasa and Weber, Marcus and Sch{\"u}tte, Christof}, title = {Finding dominant structures of nonreversible Markov processes}, issn = {1438-0064}, doi = {10.1137/15M1032272}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55739}, abstract = {Finding metastable sets as dominant structures of Markov processes has been shown to be especially useful in modeling interesting slow dynamics of various real world complex processes. Furthermore, coarse graining of such processes based on their dominant structures leads to better understanding and dimension reduction of observed systems. However, in many cases, e.g. for nonreversible Markov processes, dominant structures are often not formed by metastable sets but by important cycles or mixture of both. This paper aims at understanding and identifying these different types of dominant structures for reversible as well as nonreversible ergodic Markov processes. Our algorithmic approach generalizes spectral based methods for reversible process by using Schur decomposition techniques which can tackle also nonreversible cases. We illustrate the mathematical construction of our new approach by numerical experiments.}, language = {en} } @article{DjurdjevacConradBanischSchuette, author = {Djurdjevac Conrad, Natasa and Banisch, Ralf and Sch{\"u}tte, Christof}, title = {Modularity of Directed Networks: Cycle Decomposition Approach}, series = {Journal of Computational Dynamics 2 (2015) pp. 1-24}, journal = {Journal of Computational Dynamics 2 (2015) pp. 1-24}, doi = {10.3934/jcd.2015.2.1}, abstract = {The problem of decomposing networks into modules (or clusters) has gained much attention in recent years, as it can account for a coarsegrained description of complex systems, often revealing functional subunits of these systems. A variety of module detection algorithms have been proposed, mostly oriented towards finding hard partitionings of undirected networks. Despite the increasing number of fuzzy clustering methods for directed networks, many of these approaches tend to neglect important directional information. In this paper, we present a novel random walk based approach for finding fuzzy partitions of directed, weighted networks, where edge directions play a crucial role in defining how well nodes in a module are interconnected. We will show that cycle decomposition of a random walk process connects the notion of network modules and information transport in a network, leading to a new, symmetric measure of node communication. Finally, we will use this measure to introduce a communication graph, for which we will show that although being undirected it inherits all necessary information about modular structures from the original network.}, language = {en} } @article{BanischDjurdjevacConradSchuette, author = {Banisch, Ralf and Djurdjevac Conrad, Natasa and Sch{\"u}tte, Christof}, title = {Reactive flows and unproductive cycles for random walks on complex networks}, series = {The European Physical Journal Special Topics, vol. 224, iss. 12 (2015) pp. 2369-2387}, journal = {The European Physical Journal Special Topics, vol. 224, iss. 12 (2015) pp. 2369-2387}, doi = {10.1140/epjst/e2015-02417-8}, language = {en} }