@inproceedings{AmbellanTackWilsonetal.2017, author = {Ambellan, Felix and Tack, Alexander and Wilson, Dave and Anglin, Carolyn and Lamecker, Hans and Zachow, Stefan}, title = {Evaluating two methods for Geometry Reconstruction from Sparse Surgical Navigation Data}, volume = {16}, booktitle = {Proceedings of the Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer- und Roboterassistierte Chirurgie (CURAC)}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65339}, pages = {24 -- 30}, year = {2017}, abstract = {In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system. We validate the fitted models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the same patients. We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As part of the surgical protocol the patients' distal femurs were partially digitized. All patients had an MRI scan two months pre-operatively. The MRI data were manually segmented and the reconstructed bone surfaces used as ground truth against which the fit was compared. Two methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM). For both approaches, the difference between model fit and ground truth surface averaged less than 1.7 mm and excellent correspondence with the distal femoral morphology can be demonstrated.}, language = {en} } @misc{AmbellanTackWilsonetal.2017, author = {Ambellan, Felix and Tack, Alexander and Wilson, Dave and Anglin, Carolyn and Lamecker, Hans and Zachow, Stefan}, title = {Evaluating two methods for Geometry Reconstruction from Sparse Surgical Navigation Data}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66052}, year = {2017}, abstract = {In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system. We validate the fitted models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the same patients. We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As part of the surgical protocol the patients' distal femurs were partially digitized. All patients had an MRI scan two months pre-operatively. The MRI data were manually segmented and the reconstructed bone surfaces used as ground truth against which the fit was compared. Two methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM). For both approaches, the difference between model fit and ground truth surface averaged less than 1.7 mm and excellent correspondence with the distal femoral morphology can be demonstrated.}, language = {en} } @inproceedings{AmbellanTackEhlkeetal.2018, author = {Ambellan, Felix and Tack, Alexander and Ehlke, Moritz and Zachow, Stefan}, title = {Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, booktitle = {Medical Imaging with Deep Learning}, year = {2018}, abstract = {We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging, that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The method is evaluated on data of the MICCAI grand challenge "Segmentation of Knee Images 2010". For the first time an accuracy equivalent to the inter-observer variability of human readers has been achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy. In conclusion, combining of anatomical knowledge using SSMs with localized classification via CNNs results in a state-of-the-art segmentation method.}, language = {en} } @misc{AmbellanZachowvonTycowicz2019, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {An as-invariant-as-possible GL+(3)-based Statistical Shape Model}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74566}, year = {2019}, abstract = {We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.}, language = {en} } @inproceedings{AmbellanZachowvonTycowicz2019, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {An as-invariant-as-possible GL+(3)-based Statistical Shape Model}, volume = {11846}, booktitle = {Proc. 7th MICCAI workshop on Mathematical Foundations of Computational Anatomy (MFCA)}, publisher = {Springer}, doi = {10.1007/978-3-030-33226-6_23}, pages = {219 -- 228}, year = {2019}, abstract = {We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.}, language = {en} } @misc{AmbellanZachowvonTycowicz2019, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {A Surface-Theoretic Approach for Statistical Shape Modeling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74497}, year = {2019}, abstract = {We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.}, language = {en} } @inproceedings{AmbellanZachowvonTycowicz2019, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {A Surface-Theoretic Approach for Statistical Shape Modeling}, volume = {11767}, booktitle = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), Part IV}, publisher = {Springer}, doi = {10.1007/978-3-030-32251-9_3}, pages = {21 -- 29}, year = {2019}, abstract = {We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.}, language = {en} } @article{SekuboyinaBayatHusseinietal.2020, author = {Sekuboyina, Anjany and Bayat, Amirhossein and Husseini, Malek E. and L{\"o}ffler, Maximilian and Li, Hongwei and Tetteh, Giles and Kukačka, Jan and Payer, Christian and Štern, Darko and Urschler, Martin and Chen, Maodong and Cheng, Dalong and Lessmann, Nikolas and Hu, Yujin and Wang, Tianfu and Yang, Dong and Xu, Daguang and Ambellan, Felix and Amiranashvili, Tamaz and Ehlke, Moritz and Lamecker, Hans and Lehnert, Sebastian and Lirio, Marilia and de Olaguer, Nicol{\´a}s P{\´e}rez and Ramm, Heiko and Sahu, Manish and Tack, Alexander and Zachow, Stefan and Jiang, Tao and Ma, Xinjun and Angerman, Christoph and Wang, Xin and Wei, Qingyue and Brown, Kevin and Wolf, Matthias and Kirszenberg, Alexandre and Puybareau, {\´E}lodie and Valentinitsch, Alexander and Rempfler, Markus and Menze, Bj{\"o}rn H. and Kirschke, Jan S.}, title = {VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images}, journal = {arXiv}, arxiv = {http://arxiv.org/abs/2001.09193}, year = {2020}, language = {en} } @article{AmbellanZachowvonTycowicz2021, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {Rigid Motion Invariant Statistical Shape Modeling based on Discrete Fundamental Forms}, volume = {73}, journal = {Medical Image Analysis}, arxiv = {http://arxiv.org/abs/2111.06850}, doi = {10.1016/j.media.2021.102178}, year = {2021}, abstract = {We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. Additionally, as planar configurations form a submanifold in shape space, our representation allows for effective estimation of quasi-isometric surfaces flattenings. We evaluate the performance of our model w.r.t. shape-based classification of hippocampus and femur malformations due to Alzheimer's disease and osteoarthritis, respectively. In particular, we achieve state-of-the-art accuracies outperforming the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing biological shape variability, we carry out an analysis of specificity and generalization ability.}, language = {en} } @article{WilsonAnglinAmbellanetal.2017, author = {Wilson, David and Anglin, Carolyn and Ambellan, Felix and Grewe, Carl Martin and Tack, Alexander and Lamecker, Hans and Dunbar, Michael and Zachow, Stefan}, title = {Validation of three-dimensional models of the distal femur created from surgical navigation point cloud data for intraoperative and postoperative analysis of total knee arthroplasty}, volume = {12}, journal = {International Journal of Computer Assisted Radiology and Surgery}, number = {12}, publisher = {Springer}, doi = {10.1007/s11548-017-1630-5}, pages = {2097 -- 2105}, year = {2017}, abstract = {Purpose: Despite the success of total knee arthroplasty there continues to be a significant proportion of patients who are dissatisfied. One explanation may be a shape mismatch between pre and post-operative distal femurs. The purpose of this study was to investigate a method to match a statistical shape model (SSM) to intra-operatively acquired point cloud data from a surgical navigation system, and to validate it against the pre-operative magnetic resonance imaging (MRI) data from the same patients. Methods: A total of 10 patients who underwent navigated total knee arthroplasty also had an MRI scan less than 2 months pre-operatively. The standard surgical protocol was followed which included partial digitization of the distal femur. Two different methods were employed to fit the SSM to the digitized point cloud data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM). The available MRI data were manually segmented and the reconstructed three-dimensional surfaces used as ground truth against which the statistical shape model fit was compared. Results: For both approaches, the difference between the statistical shape model-generated femur and the surface generated from MRI segmentation averaged less than 1.7 mm, with maximum errors occurring in less clinically important areas. Conclusion: The results demonstrated good correspondence with the distal femoral morphology even in cases of sparse data sets. Application of this technique will allow for measurement of mismatch between pre and post-operative femurs retrospectively on any case done using the surgical navigation system and could be integrated into the surgical navigation unit to provide real-time feedback.}, language = {en} }